Answer:
$7.10
Step-by-step explanation:
Step 1: We make the assumption that 35.5 is 100% since it is our output value.
Step 2: We next represent the value we seek with $x$.
Step 3: From step 1, it follows that $100\%=35.5$.
Step 4: In the same vein, $x\%=20$.
Step 5: This gives us a pair of simple equations:
$100\%=35.5(1)$.
$x\%=20(2)$.
Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have
Step 7: Taking the inverse (or reciprocal) of both sides yields
Hope this helps <3
Answer:
6
Step-by-step explanation:
8.5 can also be written as 8.50. If you take the digits in the hundredths place, 10 and 4, and subtract them, you get 6.
Answer:
B) 3
Step-by-step explanation:
f(3) = 3^2 + 3(3) = 9 + 9 = 18
Answer:
f(n)=f(n-1)+f(n-2)
f(1)=1x
f(2)=1x
Step-by-step explanation:
This is the fibonacci sequence with each term times x.
Notice, you are adding the previous two terms to get the third term per consecutive triples of the sequence.
That is:
1x+1x=2x
1x+2x=3x
2x+3x=5x
3x+5x=8x
So since we need the two terms before the third per each consecutive triple in the sequence, our recursive definition must include two terms of the sequence. People normally go with the first two.
f(1)=1x since first term of f is 1x
f(2)=1x since second term of f is 1x
Yes, I'm naming the sequence f.
So I said a third term in a consecutive triple of the sequence is equal to the sum of it's two prior terms. Example, f(3)=f(2)+f(1) and f(4)=f(3)+f(2) and so on...
Note, the term before the nth term is the (n-1)th term and the term before the (n-1)th term is the (n-2)th term. Just like before the 15th term you have the (15-1)th term and before that one you have the (15-2)th term. That example simplified means before the 15th term you have the 14th and then the 13th.
So in general f(n)=f(n-1)+f(n-2).
So the full recursive definition is:
f(n)=f(n-1)+f(n-2)
f(1)=1x
f(2)=1x
Answer:
The pairs are (13,15) and (-15,-13).
Step-by-step explanation:
If n is an odd integer, the very next odd integer will be n+2.
n+1 is even (so we aren't using this number)
The sum of the squares of (n) and (n+2) is 394.
This means
(n)^2+(n+2)^2=394
n^2+(n+2)(n+2)=394
n^2+n^2+4n+4=394 since (a+b)(a+b)=a^2+2ab+b^2
Combine like terms:
2n^2+4n+4=394
Subtract 394 on both sides:
2n^2+4n-390=0
Divide both sides by 2:
n^2+2n-195=0
Now we need to find two numbers that multiply to be -195 and add up to be 2.
15 and -13 since 15(-13)=-195 and 15+(-13)=2
So the factored form is
(n+15)(n-13)=0
This means we have n+15=0 and n-13=0 to solve.
n+15=0
Subtract 15 on both sides:
n=-15
n-13=0
Add 13 on both sides:
n=13
So if n=13 , then n+2=15.
If n=-15, then n+2=-13.
Let's check both results
(n,n+2)=(13,15)
13^2+15^2=169+225=394. So (13,15) looks good!
(n,n+2)=(-15,-13)
(-15)^2+(-13)^2=225+169=394. So (-15,-13) looks good!