Answer:
j i a few u can call you in bright mode of switch ij you can see it on GoDaddy to u all happy with it and k bol raha h ki jay ram ram ram
Answer:
6
Step-by-step explanation:
Cost per item is found by dividing the cost by the number of items. If the woman bought n items for $120, the cost of each item is $120/n. If the woman bought 24 more items, n+24, at the same price, then the cost per item is $120/(n+24). The problem statement tells us this last cost is $16 less than the first cost:
120/(n+24) = (120/n) -16
Multiplying by n(n+24) gives ...
120n = 120(n+24) -16(n)(n+24)
0 = 120·24 -16n^2 -16·24n . . . . . . subtract 120n and collect terms
n^2 +24n -180 = 0 . . . . . . . . . . . . . divide by -16 to make the numbers smaller
(n +30)(n -6) = 0 . . . . . . . . . . . . . . factor the quadratic
The solutions to this are the values of n that make the factors zero: n = -30, n = 6. The negative value of n has no meaning in this context, so n=6 is the solution to the equation.
The woman bought 6 items.
_____
Check
When the woman bought 6 items for $120, she paid $120/6 = $20 for each of them. If she bought 6+24 = 30 items for the same money, she would pay $120/30 = $4 for each item. That amount, $4, is $16 less than the $20 she paid for each item.
Hello,
The length from Memphis to Alaska is approximately 3,946 miles.
Hope this helps!
Answer:
The hypothesis test is right-tailed
Step-by-step explanation:
To identify a one tailed test, the claim in the case study tests for the either of the two options of greater or less than the mean value in the null hypothesis.
While for a two tailed test, the claim always test for both options: greater and less than the mean value.
Thus given this: H0:X=10.2, Ha:X>10.2, there is only the option of > in the alternative claim thus it is a one tailed hypothesis test and right tailed.
A test with the greater than option is right tailed while that with the less than option is left tailed.
Answer:
The first step to dividing fractions is to find the reciprocal (reverse the numerator and denominator) of the second fraction. Next, multiply the two numerators. Then, multiply the two denominators. Finally, simplify the fractions if needed.