now, there are 12 months in a year, so 18 months is really 18/12 of a year, thus
![~~~~~~ \textit{Simple Interest Earned Amount} \\\\ A=P(1+rt)\qquad \begin{cases} A=\textit{accumulated amount}\dotfill & \$4000\\ P=\textit{original amount deposited}\\ r=rate\to 5\%\to \frac{5}{100}\dotfill &0.05\\ t=years\to \frac{18}{12}\dotfill &\frac{3}{2} \end{cases} \\\\\\ 4000=P[1+(0.05)(\frac{3}{2})]\implies 4000=P(1.075) \\\\\\ \cfrac{4000}{1.075}=P\implies 3720.93\approx P](https://tex.z-dn.net/?f=~~~~~~%20%5Ctextit%7BSimple%20Interest%20Earned%20Amount%7D%20%5C%5C%5C%5C%20A%3DP%281%2Brt%29%5Cqquad%20%5Cbegin%7Bcases%7D%20A%3D%5Ctextit%7Baccumulated%20amount%7D%5Cdotfill%20%26%20%5C%244000%5C%5C%20P%3D%5Ctextit%7Boriginal%20amount%20deposited%7D%5C%5C%20r%3Drate%5Cto%205%5C%25%5Cto%20%5Cfrac%7B5%7D%7B100%7D%5Cdotfill%20%260.05%5C%5C%20t%3Dyears%5Cto%20%5Cfrac%7B18%7D%7B12%7D%5Cdotfill%20%26%5Cfrac%7B3%7D%7B2%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%204000%3DP%5B1%2B%280.05%29%28%5Cfrac%7B3%7D%7B2%7D%29%5D%5Cimplies%204000%3DP%281.075%29%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B4000%7D%7B1.075%7D%3DP%5Cimplies%203720.93%5Capprox%20P)
Answer:
191.9
Step-by-step explanation:
(8 × 24) - (1 ÷ 10)=191.9
Answer:
2p²-5p+3 is the final answer as they aren't any like terms to collect in order to simply the solution further.
Step-by-step explanation:
Wishing you a splendiferous day,
stay salty...
Hello! For ease of calculations, we can identify the time it took for the weight to bounce back to the other direction, then the other, and then back to its original position by looking at the time it took for the weight to change from 0 to 25 to 0 to -25 then back to 0. This is one whole cycle of the weight.
By the time the weight first reached zero, 1.5 seconds has passed. By the third time it got to zero again, 7.5 seconds has passed. Therefore, one whole cycle of the weight is 7.5-1.5 = 6.0 seconds.
ANSWER: One whole cycle of the weight took 6 seconds.
The answer is definitely 30 :) thanks for the points!