Answer:
750W
Explanation:
40×10= 400N
work done= force × distance
=400 × 75
=30000 J
Power= work done/ time
= 30000 ÷ 40
= 750 W
Answer:
-2.83 m/s²
Explanation:
- Initial velocity (u) = 34 m/s
- Final velocity (v) = 17 m/s
- Time taken (t) = 6 seconds
❖ Acceleration is defined as the rate of change in velocity with time.
→ a = (v - u)/t
- v denotes final velocity
- a denotes acceleration
- u denotes initial velocity
- t denotes time
→ a = (17 - 34)/6 m/s²
→ a = -17/6 m/s²
<h3>→ Acceleration = -2.83 m/s²</h3>
(Minus sign implies that the velocity is decreasing.)
Answer: a) 7.1 * 10^3 N; b) -880 N directed out of the curve.
Explanation: In order to solve this problem we have to use the Newton laws, then we have the following:
Pcos 15°-N=0
Psin15°-f= m*ac
from the first we obtain N, the normal force
N=750Kg*9.8* cos (15°)= 7.1 *10^3 N
Then to calculate the frictional force (f) we can use the second equation
f=P sin (15°) -m*ac where ac is the centripetal acceletarion which is equal to v^2/r
f= 750 *9.8 sin(15°)-750*(85*1000/3600)^2/150= -880 N
Explanation:
Given that,
A ball is tossed straight up with an initial speed of 30 m/s
We need to find the height it will go and the time it takes in the air.
At its maximum height, its final speed, v = 0 and it will move under the action of gravity. Using equation of motion :
v = u +at
Here, a = -g
v = u -gt
i.e. u = gt

So, the time for upward motion is 3.06 seconds. It means that it will in air for 3.06×2 = 6.12 seconds
Let d is the maximum distance covered by it.

Putting all values

Hence, it will go to a height of 45.91 m and it will in the air for 6.12 seconds.
Answer: Phillipe wins the race
Explanation:
Given
Length of track=20 m
Velocity of Phillippe=2 m/s w.r.t sidewalk
Velocity of sidewalk=1.5 m/s
Rena velocity=2 m/s
Therefore absolute velocity of P is 2+1.5=3.5 m/s
Time taken by phillippe 
=5.714+10=15.714 s
Time taken by rena

as the time taken by phillippe is less than rena therefore Phillippe wins the race.