Answer:
W ’= 21.78 kg
Explanation:
The expression for weight is
W = m g
let's look for the acceleration of gravity with the universal law of gravitation
F = G m M / r2
F = m (G M / r2)
without comparing the two equations
g’= G M / r2
in that case M = 2 Mo and r = 3 ro
where mo and ro are the mass and radius of the earth
we substitute
g ’= G 2Mo / (3r₀) 2
G ’= 2/9 G Mo / r₀²
g ’= 2/9 g
the weight of the body on this planet is
W ’= m g’
W ’= m 2/9 g
let's calculate
W ’= 2/9 10 9.8
W ’= 21.78 kg
Hola te voy hacer el día de la escuela madre semana que t que wbien no te
Answer:
a. 4 m/s b. 0.2 V
Explanation:
a. Find the flow rate through a 3.00-cm-diameter pipe if the Hall voltage is 60.0 mV.
The hall voltage V = vBd where v = flow-rate, B = magnetic field strength = 0.500 T and d = diameter of pipe = 3.00 cm = 0.03 m
Since V = vBd
v = V/Bd given that V = 60.0 mV = 0.060 V, substituting the values of the other variables, we have
v = 0.060 V/(0.500 T × 0.03 m)
v = 0.060 V/(0.015 Tm)
v = 4 m/s
b. What would the Hall voltage be for the same flow rate through a 10.0-cm-diameter pipe with the same field applied?
Since the hall voltage, V = vBd and v = flow-rate = 4 m/s, B = magnetic field strength = 0.500 T and d' = diameter of pipe = 10.0 cm = 0.10 m
Substituting the variables into the equation, we have
V = vBd
V = 4 m/s × 0.500 T × 0.10 m
V = 0.2 V