Answer:
x+y+z=2 has no solutions. You can pick an arbitrary value for x4, and use that to calculate values for all the other variables so that all the equations will be satisfied. If you can set x4 to one of an infinity of real values, then you have an infinity of solutions
5 65,749
13,149 R4 2.
6 22,176
3,696 R0 3.
5 25,931
5,186 R1
4.
4 71,568
17,892 R0 5.
7 98,694
14,099 R1 6.
9 81,844
9,093 R7
<h3><u>Solution</u></h3>
<u>Given </u><u>:</u><u>-</u>
- Perimeter of rectangle = 72 cm
- The length is 3 more than twice the width.
<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>:</u><u>-</u>
<h3 /><h3>
<u>Explantion</u></h3>
<u>Using </u><u>Formula</u>

<u>Let,</u>
- Length of Rectangle = x cm
- Breadth of Rectangle = y cm
<u>According</u><u> to</u><u> question</u><u>,</u>
==> perimeter of Rectangle = 72
==> 2(x+y) = 72
==> x + y = 72/2
==> x + y = 36_________________(1)
<u>Again,</u>
==> x = 2y + 3
==> x - 2y = 3__________________(2)
<u>Subtract</u><u> </u><u>equ(</u><u>1</u><u>)</u><u> </u><u>&</u><u> </u><u>equ(</u><u>2</u><u>)</u>
==> y + 2y = 36 - 3
==> 3y = 33
==> y = 33/3
==> y = 11
<u>keep </u><u>in </u><u>equ(</u><u>1</u><u>)</u>
==> x - 2×11 = 3
==> x = 3 + 22
==> x = 25
<h3><u>Hence</u></h3>
- <u>Length</u><u> of</u><u> </u><u>Rectangle</u><u> </u><u>=</u><u> </u><u>2</u><u>5</u><u> </u><u>cm</u>
- <u>Width </u><u>of </u><u>Rectangle</u><u> </u><u>=</u><u> </u><u>1</u><u>1</u><u> </u><u>cm</u>
<h3>
<u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u></h3>
<h3 />
Answer:
y = 
Step-by-step explanation:
Step 1: Switch sides
5 - 2y = 4x
Step 2: Subtract 5 from both sides
5 - 2y - 5 = 4x - 5
Step 3: Simplify
-2y = 4x - 5
Step 4: Divide both sides by -2

Step 5: Simplify
y = 