This is the concept of relative speed; We are required to calculate the speed of the car and the bicycle.
Distance between the car and Bicycle=374 miles
Time they met=5.5 hr
Speed traveled by bicycle=x
Speed traveled by car=x+33.4334
Relative speed=x+(x+33.4334)=(2x+33.4334) mph
Distance=speed*time
374=(2x+33.4334)*5.5
374=11x+183.8837
collecting like term we get:
374-183.8837=11x
11x=190.1163
thus;
x=(190.1163)/(11)
x=17.2833 mph
thus the speed of the bicycle was x=17.2833 mph
The speed of the car was (x+33.4334)=(17.2833+33.4334)=50.7167 mph
Answer:
66
Step-by-step explanation:
Answer:

Step-by-step explanation:
We need at least two points to write the equation of a straight line.
The recursive formula that Elijah wrote is:


When we substitute n=0, we get:



The points (0,30) and (1,37) lies on this line.
The equation of this line is of the form:

where b =30 is the y-intercept and m=7 is the slope.
We plug in these values to get:

Note that the slope of the line is equal to the common difference of the Arithmetic Sequence.
You could also use the two points to find the slope:

Answer:
Possible derivation:
d/dx(a x + a y(x) + x a + y(x) a)
Rewrite the expression: a x + a y(x) + x a + y(x) a = 2 a x + 2 a y(x):
= d/dx(2 a x + 2 a y(x))
Differentiate the sum term by term and factor out constants:
= 2 a (d/dx(x)) + 2 a (d/dx(y(x)))
The derivative of x is 1:
= 2 a (d/dx(y(x))) + 1 2 a
Using the chain rule, d/dx(y(x)) = (dy(u))/(du) (du)/(dx), where u = x and d/(du)(y(u)) = y'(u):
= 2 a + d/dx(x) y'(x) 2 a
The derivative of x is 1:
= 2 a + 1 2 a y'(x)
Simplify the expression:
= 2 a + 2 a y'(x)
Simplify the expression:
Answer: = 2 a
Step-by-step explanation: