Answer:
(D) 1+0.06m
Step-by-step explanation:
Let's say that m=$120
(A)= $127.2
(B)= $127.2
(C)= $127.2
(D)= $8.2
As you can see after I substituted in 120 for (m) and solved, D is the only equation that did not represent her current balance.
I hope this helps!
y = ln x , 1 <= x <= 3, about x axis and n = 10, dy/dx = 1/ x
S = (b a) ∫ 2π y √( 1 + (dy/dx) ^2) dx
so our f(x) is 2π y √( 1 + (dy/dx) ^2)
(b - a) / n = / 3 = (3-1) / 30 = 1/15
x0 = 1 , x1 = 1.2, x2 = 1.4, x3 = 1.6 ....... x(10) = 3
So we have , using Simpsons rule:-
S10 = (1/15) ( f(x0) + 4 f(x1) + 2 f)x2) +.... + f(x10) )
= (1/15) f(1) + f(3) + 4(f(1.2) + f(1.6) + f(2) + f(2.4) + f(2.8)) + 2(f(1.4) + f(1.8) + f(2.2) + f(2.6) )
( Note f(1) = 2 * π * ln 1 * √(1 + (1/1)^2) = 0 and f(3) = 2π ln3√(1+(1/3^2) = 7,276)
so we have S(10)
= 1/15 ( 0 + 7.2761738 + 4(1.4911851 +
Miles earned= ((1÷8)×11)÷1
= 1.375 miles
average speed=total distance/total time
=1.375÷3.5=0.3928 miles/min
Answer:
0.6247
Step-by-step explanation:
The formula for calculating a Z-score is Z = (X - μ)/σ,
where x is the raw score
μ is the population mean
σ is the population standard deviation.
From the question,
μ = 51, σ = 10. We are to find P(36 ≤ X ≤ 56)
Step 1
Find the Probability of X ≤ 36
μ = 51, σ = 10
Z = (X - μ)/σ
Z = 36 - 51/ 10
Z = -15/10
Z = -1.5
We find the Probability of Z = -1.5 from Z-Table
P(X <36) = P(X = 36) = P(Z = -1.5)
= 0.066807
Step 2
Find the Probability of X ≤ 56
μ = 51, σ = 10
Z = (X - μ)/σ
Z = 56 - 51/ 10
Z = 5/10
Z = 0.5
We find the Probability of Z = 0.5 from Z-Table:
P(X < 56) = P(X = 56) = P(Z = 0.5)= 0.69146
Step 3
Find P(36 ≤ X ≤ 56)
P(36 ≤ X ≤ 56) = P(X ≤ 56) - P(X ≤ 36)
= P( Z = 0.5) - P(Z = -1.5)
= 0.69146 - 0.066807
= 0.624653
Approximately to 4 decimal places , P(36 ≤ X ≤ 56) = 0.6247
1. The fourth graph: D
2. The first graph: A