What are the first, second, and third frequencies audible from a 20 cm long organ pipe when (A) only one end is open and when (B
) both ends are open. The speed of sound through the air inside the organ pipe is 343m/s. (Hint: if a harmonic does not exist, it would not be heard.)
1 answer:
A) The answers are:
the first frequency - 428.75 Hz
the second frequency - 1286.25 Hz
the third frequency - 2143.75 Hz
The frequency (when the pipe is closed) is: f = v(2n - 1)/4L
v - the speed of sound
n - the frequency order
L - the length of the organ pipe
We know:
v = 343 m/s
L = 20 cm = 0.2 m
1. The first frequency (n = 1):
f = 343 * (2 * 1 - 1) / 4 * 0.2 = 343 * 1 / 0.8 = 428.75 Hz
2. The second frequency (n = 2):
f = 343 * (2 * 2 - 1) / 4 * 0.2 = 343 * 3 / 0.8 = 1286.25 Hz
3. The third frequency (n = 3):
f = 343 * (2 * 3 - 1) / 4 * 0.2 = 343 * 5 / 0.8 = 2143.75 Hz
B) The answers are:
the first frequency - 857.5 Hz
the second frequency - 1715 Hz
the third frequency - 2572.5 Hz
The frequency (when the pipe is open) is: f = vn/2L
v - the speed of sound
n - the frequency order
L - the length of the organ pipe
We know:
v = 343 m/s
L = 20 cm = 0.2 m
1. The first frequency (n = 1):
f = 343 * 1 / 2 * 0.2 = 343 / 0.4 = 857.5 Hz
2. The second frequency (n = 2):
f = 343 * 2 / 2 * 0.2 = 686 / 0.4 = 1715 Hz
3. The third frequency (n = 3):
f = 343 * 3 / 2 * 0.2 = 1029 / 0.4 = 2572.5 Hz
You might be interested in
Answer:
78 degrees
Step-by-step explanation:
All inner angles of a triangle make a sum of 180 degrees. Given 41 and 61 add up to 102, that leaves 78 degrees left to make 180
I think it’s 49 I just looked it up
Answer:
C
Step-by-step explanation:

Your answer is 6 centimeters because you would have to subtract 3 from 9. Hence, your answer is 6.
Hope I helped!