Answer:
I think it is -5+root-7/2 & -5-root-7/2
Step-by-step explanation:
Hello!
The median is the number in the middle when the data is ordered from least to greatest
Order the numbers first
1, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 11
From here when find the medians which are two 6's which means the median is 6
Hope this helps!
Here you go. I hope you understand. Ask if you don't.
Answer:
Integration of I=
=![[\frac{logx}{n+1} x^{(n+1)}]-[\frac{1}{(n+1)^{2}}x^{(n+1)}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7D%20x%5E%7B%28n%2B1%29%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7Dx%5E%7B%28n%2B1%29%7D%5D)
Step-by-step explanation:
Given integral is I= 
Take logx=t





I= 
I= 
Using integration by part,
![I= (t)\int [e^{(n+1)t}]\, dt-\int[\frac{d}{dt}{t}\times\int (e^{(n+1)t})]\\\\I= (t) [\frac{1}{n+1}e^{(n+1)t}]-\int[1\times\frac{1}{n+1}e^{(n+1)t}]\,dt\\\\I=[\frac{t}{n+1}e^{(n+1)t}]-[\frac{1}{(n+1)^{2}}e^{(n+1)t}]](https://tex.z-dn.net/?f=I%3D%20%28t%29%5Cint%20%5Be%5E%7B%28n%2B1%29t%7D%5D%5C%2C%20dt-%5Cint%5B%5Cfrac%7Bd%7D%7Bdt%7D%7Bt%7D%5Ctimes%5Cint%20%28e%5E%7B%28n%2B1%29t%7D%29%5D%5C%5C%5C%5CI%3D%20%28t%29%20%5B%5Cfrac%7B1%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29t%7D%5D-%5Cint%5B1%5Ctimes%5Cfrac%7B1%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29t%7D%5D%5C%2Cdt%5C%5C%5C%5CI%3D%5B%5Cfrac%7Bt%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29t%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7De%5E%7B%28n%2B1%29t%7D%5D)
Writing in terms of x
I=![[\frac{t}{n+1}e^{(n+1)t}]-[\frac{1}{(n+1)^{2}}e^{(n+1)t}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bt%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29t%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7De%5E%7B%28n%2B1%29t%7D%5D)
I=![[\frac{logx}{n+1}e^{(n+1)logx}]-[\frac{1}{(n+1)^{2}}e^{(n+1)logx}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29logx%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7De%5E%7B%28n%2B1%29logx%7D%5D)
I=![[\frac{logx}{n+1}e^{logx^{(n+1)}}]-[\frac{1}{(n+1)^{2}}e^{logx^{(n+1)}}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7De%5E%7Blogx%5E%7B%28n%2B1%29%7D%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7De%5E%7Blogx%5E%7B%28n%2B1%29%7D%7D%5D)
I=![[\frac{logx}{n+1} x^{(n+1)}]-[\frac{1}{(n+1)^{2}}x^{(n+1)}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7D%20x%5E%7B%28n%2B1%29%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7Dx%5E%7B%28n%2B1%29%7D%5D)
Thus,
Integration of I=
=![[\frac{logx}{n+1} x^{(n+1)}]-[\frac{1}{(n+1)^{2}}x^{(n+1)}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7D%20x%5E%7B%28n%2B1%29%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7Dx%5E%7B%28n%2B1%29%7D%5D)