Answer:
The parametrization of the curve on the surface is
![c(t) = [x(t) , y(t), z(t)] \equiv [\frac{\sqrt{97} }{2} cost - 4 , \frac{\sqrt{97} }{2} sint + \frac{5}{2} , 5\frac{\sqrt{97} }{2} sint -8 \frac{\sqrt{97} }{2} cost +\frac{93}{2} ]](https://tex.z-dn.net/?f=c%28t%29%20%3D%20%20%5Bx%28t%29%20%2C%20y%28t%29%2C%20z%28t%29%5D%20%5Cequiv%20%5B%5Cfrac%7B%5Csqrt%7B97%7D%20%7D%7B2%7D%20cost%20-%204%20%2C%20%5Cfrac%7B%5Csqrt%7B97%7D%20%7D%7B2%7D%20%20sint%20%20%2B%20%5Cfrac%7B5%7D%7B2%7D%20%2C%20%205%5Cfrac%7B%5Csqrt%7B97%7D%20%7D%7B2%7D%20%20sint%20%20%20-8%20%5Cfrac%7B%5Csqrt%7B97%7D%20%7D%7B2%7D%20cost%20%2B%5Cfrac%7B93%7D%7B2%7D%20%5D)
Where


Step-by-step explanation:
From the question we are told that
The equation for the paraboloid is 
The equation of the plane is 
Form the equation of the plane we have that

So

=> 
Using completing the square method to evaluate the quadratic equation we have



representing the above equation in parametric form
, 


So from 
![z = 5[\frac{\sqrt{97} }{2} sint + \frac{5}{2}] -8[ \frac{\sqrt{97} }{2} cost - 4] +2](https://tex.z-dn.net/?f=z%20%3D%205%5B%5Cfrac%7B%5Csqrt%7B97%7D%20%7D%7B2%7D%20%20sint%20%20%2B%20%5Cfrac%7B5%7D%7B2%7D%5D%20-8%5B%20%20%5Cfrac%7B%5Csqrt%7B97%7D%20%7D%7B2%7D%20cost%20-%204%5D%20%2B2)
Generally the parametrization of the curve on the surface is mathematically represented as
![c(t) = [x(t) , y(t), z(t)] \equiv [\frac{\sqrt{97} }{2} cost - 4 , \frac{\sqrt{97} }{2} sint + \frac{5}{2} , 5\frac{\sqrt{97} }{2} sint -8 \frac{\sqrt{97} }{2} cost +\frac{93}{2} ]](https://tex.z-dn.net/?f=c%28t%29%20%3D%20%20%5Bx%28t%29%20%2C%20y%28t%29%2C%20z%28t%29%5D%20%5Cequiv%20%5B%5Cfrac%7B%5Csqrt%7B97%7D%20%7D%7B2%7D%20cost%20-%204%20%2C%20%5Cfrac%7B%5Csqrt%7B97%7D%20%7D%7B2%7D%20%20sint%20%20%2B%20%5Cfrac%7B5%7D%7B2%7D%20%2C%20%205%5Cfrac%7B%5Csqrt%7B97%7D%20%7D%7B2%7D%20%20sint%20%20%20-8%20%5Cfrac%7B%5Csqrt%7B97%7D%20%7D%7B2%7D%20cost%20%2B%5Cfrac%7B93%7D%7B2%7D%20%5D)
Answer:
Im in my step-fathers closet
Step-by-step explanation:
The answer is D! x(x+4). Hope this helps!!
Hey Kayla!
Let me help you out real quick.
x - 2y = 5
-3x + 2y = 7
We need to solve x - 2y =5 for x
x - 2y = 5
x = 5 + 2y
Now substitute 2y + 5 for x in -3x + 2y = 7
-3x + 2y = 7
-3(2y + 5) + 2y = 7
-6y - 15 + 2y = 7
-4y - 15 = 7
-4y = 7 + 15
-4y = 22
y = 22/-4
y = -11/2
Now we need to substitute -11/2 for y in x= 2y + 5
x = 2y + 5
x = 2(-11/2) + 5
x = -22/2 + 5
x = -6
Thus,
The answer is x = -6 and y = -11/2
The correct answer is option D
Good luck with your studies :)
You got it!
<span />