Answer:
Option B.
Step-by-step explanation:
The given vertices of the polygon are (-6,-2),(-5,1),(-1,4),(1,1),(5,3),(1,-2).
We need to find the area of the polygon.
Plot the given vertices and on a coordinate plane and draw the polygon. Divide the polygon in 4 parts as shown below.
Area of rectangle is

Area of triangle is

Area of each figure is




Area of polygon is


The area of polygon is 34.5 units².
Therefore, the correct option is B.
Answer:

Step-by-step explanation:
Recall that a <em>probability mass function</em> defined on a discrete random variable X is just a function that gives the probability that the random variable equals a certain value k
In this case we have the event
“The computer will ask for a roll to the left when a roll to the right is appropriate” with a probability of 0.003.
Then we have 2 possible events, either the computer is right or not.
Since we have 4 computers in parallel, the situation could be modeled with a binomial distribution and the probability mass function
This gives the probability that k computers are wrong at the same time.
9514 1404 393
Explanation:
<h3>8.</h3>
An exterior angle is equal to the sum of the remote interior angles. Define ∠PQR = 2q, and ∠QPR = 2p. The purpose of this is to let us use a single character to represent the angle, instead of 4 characters.
The above relation tells us ...
∠PRS = ∠PQR +∠QPR = 2q +2p
Then ...
∠TRS = (1/2)∠PRS = (1/2)(2q +2p) = q +p
and
∠TRS = ∠TQR +∠QTR . . . . . exterior is sum of remote interior
q +p = (1/2)(2q) +∠QTR . . . . substitute for ∠TRS and ∠TQR
p = ∠QTR = 1/2(∠QPR) . . . . . subtract q
__
<h3>9.</h3>
For triangle ABC, draw line DE parallel to BC through point A. Put point D on the same side of point A that point B is on the side of the median from vertex A. Then we have congruent alternate interior angles DAB and ABC, as well as EAC and ACB. The angle sum theorem tells you that ...
∠DAB +∠BAC +∠CAE = ∠DAE . . . . a straight angle = 180°
Substituting the congruent angles, this gives ...
∠ABC +∠BAC +∠ACB = 180° . . . . . the desired relation
STEP 1
Multiply total number of customers by percent who made a purchase.
= 950 customers * 82%
= 950 * 0.82
= 779 customers made a purchase
STEP 2
Subtract the number of customers who bought one and two items from the total number of customers who made a purchase.
= 779 - 538 - 186
= 55 customers purchased 3 or more items
ANSWER: 55 customers purchased 3 or more items.
Hope this helps! :)