Something that a right triangle is characterised by is the fact that we may use Pythagoras' theorem to find the length of any one of its sides, given that we know the length of the other two sides. Here, we know the length of the hypotenuse and one other side, therefor we can easily use the theorem to solve for the remaining side.
Now, Pythagoras' Theorem is defined as follows:
c^2 = a^2 + b^2, where c is the length of the hypotenuse and a and b are the lengths of the other two sides.
Given that we know that c = 24 and a = 8, we can find b by substituting c and a into the formula we defined above:
c^2 = a^2 + b^2
24^2 = 8^2 + b^2 (Substitute c = 24 and a = 8)
b^2 = 24^2 - 8^2 (Subtract 8^2 from both sides)
b = √(24^2 - 8^2) (Take the square root of both sides)
b = √512 (Evaluate 24^2 - 8^2)
b = 16√2 (Simplify √512)
= 22.627 (to three decimal places)
I wasn't sure about whether by 'approximate length' you meant for the length to be rounded to a certain number of decimal places or whether you were meant to do more of an estimate based on your knowledge of surds and powers. If you need any more clarification however don't hesitate to comment below.
Answer:
74°,74° and 106°
Step-by-step explanation:
180 -106=74°
The two opposite interior angles=74°each
The other one=106°
Step-by-step explanation:
6m+7n+5m-3n
First you rearrange the terms
6m+5m+7n-3n
Then you combine like terms
11m+4n
And there you have it
Hope it helps!
<span> 166cm would be your answer.</span>
Answer:
The sum is

Step-by-step explanation:
We want to add

The sum of these two numbers is:

This is the same as:


We rewrite 7290 in standard form to get;
