Answer: Solving for f. Want to solve for x instead?
1 Remove parentheses.
f\times -2fx=3{x}^{2}-8x+7f×−2fx=3x
2
−8x+7
2 Use Product Rule: {x}^{a}{x}^{b}={x}^{a+b}x
a
x
b
=x
a+b
.
-{f}^{2}\times 2x=3{x}^{2}-8x+7−f
2
×2x=3x
2
−8x+7
3 Regroup terms.
-2{f}^{2}x=3{x}^{2}-8x+7−2f
2
x=3x
2
−8x+7
4 Divide both sides by -2−2.
{f}^{2}x=-\frac{3{x}^{2}-8x+7}{2}f
2
x=−
2
3x
2
−8x+7
5 Divide both sides by xx.
{f}^{2}=-\frac{\frac{3{x}^{2}-8x+7}{2}}{x}f
2
=−
x
2
3x
2
−8x+7
6 Simplify \frac{\frac{3{x}^{2}-8x+7}{2}}{x}
x
2
3x
2
−8x+7
to \frac{3{x}^{2}-8x+7}{2x}
2x
3x
2
−8x+7
.
{f}^{2}=-\frac{3{x}^{2}-8x+7}{2x}f
2
=−
2x
3x
2
−8x+7
7 Take the square root of both sides.
f=\pm \sqrt{-\frac{3{x}^{2}-8x+7}{2x}}f=±√
−
2x
3x
2
−8x+7
8 Simplify \sqrt{-\frac{3{x}^{2}-8x+7}{2x}}√
−
2x
3x
2
−8x+7
to \sqrt{\frac{3{x}^{2}-8x+7}{2x}}\imath√
2x
3x
2
−8x+7
ı.
f=\pm \sqrt{\frac{3{x}^{2}-8x+7}{2x}}\imathf=±√
2x
3x
2
−8x+7
ı
9 Regroup terms.
f=\pm \imath \sqrt{\frac{3{x}^{2}-8x+7}{2x}}f=±ı√
2x
3x
2
−8x+7
Done- :)
f=±ı√ 2x 3x 2 −8x+7
Step-by-step explanation
Answer:
Step-by-step explanation:
82.1 = 82 1/10 (thats 82 and 1/10) or 821/10 (if you dont want a mixed number)
7.3 = 7 3/10 or 73/10
9.3 = 9 3/10 or 93/10
if there is 1 number to the right of the decimal, put that number over 10....not the whole number, just the number to the right of the decimal. Leave the number to the left of the decimal alone.
if there were 2 numbers to the right of the decimal, then put those two numbers over 100.
example :
3.43 = 3 43/100
2.76 = 2 76/100
if there were 3 numbers to the right of the decimal, put those 3 numbers over 1000
example :
2.347 = 2 347/1000
3.679 = 3 679/1000
you understand ?
For this inequality x is greater than or equal to 12
Answer:
no
Step-by-step explanation:
it would be 15,004 not 150,004