1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
V125BC [204]
3 years ago
7

Given that segment ED ∥ segment AB, ∠CED

Mathematics
2 answers:
sergeinik [125]3 years ago
8 0

Answer:

m∠ECD = 136°

m∠EBA = 11°

m∠CDE = 22°

m∠EAB = 22°

m∠CED = 22°

m∠AEB = 147°

m∠DEB = 11°

m∠CBA = 22°

m∠EDB = 158°

m∠DBE = 11°

Step-by-step explanation:

Clearly, m∠ECD = m∠ACB

Therefore, m∠ECD = 136°

Clearly, m∠EBA = m∠ABE

Therefore, m∠EBA = 11°

m∠CDE ≅ m∠CED (given)

But, since segment ED || segment AB,

m∠CED ≅ m∠CAB

But, m∠CAB =  22° (given)

So,  m∠CDE =  22°

Note that m∠EAB = m∠CAB

Therefore, m∠EAB = 22°

m∠CED = m∠CDE = 22°

In ΔEAB,

m∠EAB + m∠EBA + m∠AEB = 180°

22 + 11 + m∠AEB = 180

33 + m∠AEB = 180

m∠AEB = 180 - 33

m∠AEB = 147°  

Note that m∠DEB = m∠EBA (Alternate interior angles)

Therefore, m∠DEB = 11°

m∠CAB = m∠CED and

m∠CBA = m∠CDE (Corresponding angles)

But, it is given that m∠CED ≅ m∠CDE

Therefore, m∠CAB = m∠CED = m∠CDE = m∠CBA

and hence m∠CBA = 22°

In ΔEDB,

m∠EDB + m∠DBE + m∠BED = 180° (Angle sum property)

m∠EDB + 11 + 11 = 180

m∠EDB = 158°

We know that m∠CBA = 22° and m∠ABE = 11°

m∠DBE = m∠CBA - m∠ABE

= 22 - 11

11

Hence, m∠DBE = 11°



Eva8 [605]3 years ago
7 0

Answer:

With the angles given in the triangle, the missing angles on the image are:

1.) m∠ECD = 136°  

2.) m∠EBA = 11°

3.) m∠CDE =  22°

4.) m∠EAB =  22°

5.) m∠CED =  22°

6.) m∠AEB =  147°

7.) m∠DEB =  11°

8.) m∠CBA =  22°

9.) m∠EDB =  158°

10.) m∠DBE = 11°

Step-by-step explanation:

Segment ED ∥ segment AB

∠CED ≅ ∠CDE

m∠CAB = 22°

m∠ABE = 11°

m∠ACB = 136°


1.) m∠ECD

The m∠ECD is the same that the  m∠ACB, then:

m∠ECD = m∠ACB

m∠ECD = 136°


2.) m∠EBA

The m∠EBA is the same that the  m∠ABE, then:

m∠EBA = m∠ABE

m∠EBA = 11°


3.) m∠CDE

It is given that:

∠CED ≅ ∠CDE, then  m∠CED = m∠CDE

And because of the segment ED ∥ segment AB, the ∠CED must be congruent with  ∠CAB, because the corresponding angles in parallel lines (ED and AB) cut by a secant (CA) must be congruent, then:

m∠CED = m∠CAB

m∠CED = 22° (Answer part 5)

m∠CED = m∠CDE

22° = m∠CDE

m∠CDE = 22°


4.) m∠EAB

The m∠EAB is the same that the  m∠CAB, then:

m∠EAB = m∠CAB

m∠EAB = 22°


5.) m∠CED

See Explanation in part 3:

m∠CED = 22°


6.) m∠AEB

In triangle AEB:

m∠EAB = 22°

m∠ABE = 11°

m∠AEB = ?

The sum of the measurements of the interior angles of any triangle must be equal to 180°, then:

m∠EAB + m∠ABE + m∠AEB = 180°

Replacing the known values in the equation above:

22° + 11° +  m∠AEB = 180°

Adding like terms on the left side of the equation:

33° + m∠AEB = 180°

Solving for m∠AEB: Subtracting 33° both sides of the equation:

33° + m∠AEB - 33° = 180° - 33°

Subtracting:

m∠AEB = 147°


7.) m∠DEB

Because of the segment ED // segment AB, the <DEB must be congruent with <ABE, because the alternate interior angles in parallel lines (ED and AB) cut by a secant (BE) must be congruent, then:

m<DEB = m<ABE

m<DEB = 11°

 

8.) m∠CBA

Because of the segment ED // segment AB, the <CBA must be congruent with <CDE, because the corresponding angles in parallel lines (ED and AB) cut by a secant (BC) must be congruent, then:

m<CBA = m<CDE (=22°, see part 3)

m<CBA = 22°


9.) m∠EDB

According with the figure, and because BC is a straight line, the sum of the measurements of the <CDE and <EDB must be equal to 180°, then:

m<CDE + m<EDB = 180°

By part 3 we know that m<CDE=22°. Replacing this value in the equation above:

22° + m<EDB = 180°

Solving for m<EDB: Subtracting 22° both sides of the equation:

22° + m<EDB - 22° = 180° - 22°

m<EDB = 158°

10.) m∠DBE

In triangle DBE:

m∠EDB = 158° (see part 9)

m∠DEB = 11° (see part 7)

m∠DEB = ?

The sum of the measurements of the interior angles of any triangle must be equal to 180°, then:

m∠EDB + m∠DEB + m∠DEB = 180°

Replacing the known values in the equation above:

158° + 11° +  m∠DEB = 180°

Adding like terms on the left side of the equation:

169° + m∠DEB = 180°

Solving for m∠DEB: Subtracting 169° both sides of the equation:

169° + m∠DEB - 169° = 180° - 169°

Subtracting:

m∠DEB = 11°

You might be interested in
(a) The area of a rectangular field is 7161 m.
True [87]
77 m. A=l(w) and a and l are given so you substitute them getting 7161=93(w). Divide by 93 and you get 77=w
6 0
4 years ago
Read 2 more answers
Que presion manométrica debe de producir una bomba para subir agua del fondo del gran cañon ( elevación 730 m ) a indian gardens
Alexxandr [17]

Answer:

La presión manométrica debe ser 6,272,000 Pa = 61.9 atm

Step-by-step explanation:

La presión absoluta se refiere al valor de presión referido al cero absoluto o al vacío, sin presión atmosférica. Es decir, la presión absoluta es la presión con respecto al vacío total.

La presión manométrica es la que ejerce un medio distinto al de la presión atmosférica y representa la diferencia entre la presión real o absoluta y la presión atmosférica. Es decir, la presión manométrica se mide en relación a la presión atmosférica y se define como la diferencia entre presión absoluta (Pabs) y presión atmosférica predominante (Patm). La presión manométrica sólo se aplica cuando la presión es superior a la atmosférica.  

Entonces,  Pmanometrica = Pabs – Pamb

Para encontrar la presión a una profundidad h en un líquido sin movimiento, expuesto al aire cerca de la superficie de la Tierra, la presión manométrica puede ser calculada mediante:

Pmanometrica=ρ*g*Δh

donde ρ es la densidad del fluido, g la gravedad y Δh la variación en la altura.

En este caso:

  • ρ=1000 \frac{kg}{m^{3} } (densidad del agua)
  • g= 9.8  \frac{m}{s^{2} }
  • Δh=hfinal - hinitial= 1370 m - 730 m= 640 m

Reemplazando:

Pmanometrica=  1000 \frac{kg}{m^{3} } *9.8 \frac{m}{s^{2} } * 640 m

Resolviendo:

Pmanometrica= <u><em>6,272,000 Pa = 61.9 atm</em></u> (siendo 1 pascal = 9.869*10⁻⁶ atmósferas )

6 0
3 years ago
Correct answer gets brainliest and 5 stars
larisa [96]

Answer:

5, 12, 13

Step-by-step explanation:

Pythagoras theorem ⇒ Perpendicular² + Base² = Hypotenuse²

5² + 12² = 13²

25 + 144 = 169

Thus 5, 12, 13 is a Pythagorean triple.

7 0
3 years ago
Read 2 more answers
What is the value of 6 in 3.651<br><br> A. Ones<br> B. Tenths<br> C. Tens<br> D. Hundredths
kobusy [5.1K]

Hey there!

<h2>Explanation</h2>

So the first digit of the decimal is called ones. After the decimal, it starts with tenths, then hundredths, and at last thousandths. But you see 6 in the tenths place so now you have your answer.

<h2>Answer</h2>

Your answer is B. Tenths

______________________________________________________

Hope this helps :)○_•

3 0
3 years ago
Read 2 more answers
An aquarium has a square base with a side length of
Morgarella [4.7K]

responder: que?

paso a paso explica: ?

5 0
4 years ago
Read 2 more answers
Other questions:
  • Serenity has some pennies and some nickels. She has no less than 18 coins worth at most $0.66 combined. If Serenity has 12 penni
    10·1 answer
  • If the temperature changed at a rate of -3 per hour,then after how many hours did the temperature reach -12
    10·1 answer
  • Reflect , − 4 − 4 over the y -axis. Then translate the result to the right 3 units. What are the coordinates of the final point?
    8·1 answer
  • What times what equals 51
    10·2 answers
  • Which of the following is a statistical question?
    7·1 answer
  • Simplify each expression. Justify each step.
    10·1 answer
  • Find the x-intercept of 4x−2y=8
    7·1 answer
  • Jared can read 8 pages in 15 minutes. A this rate, how many pages can he read in 45 minutes?
    11·2 answers
  • Duncan has cups of sand. He divides the sand equally into 4 containers. He uses all the sand in 1 container to make pieces of sa
    9·1 answer
  • Solve for x<br><br> (please write work)
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!