Answer:
AB is congruent to CD
Explanation:
Given the following :
A(-7,1) B(-4,-3) C(3,-5) D(7,-2)
Distance AB:
A(-7,1) ; B(-4,-3) ;
AB = √[(X2 - x1)^2 + (y2 - y1)^2]
AB = √[(-4 - (-7))^2 + (-3 - 1)^2]
AB = √[(-4 + 7)^2 + (-3 - 1)^2]
AB = √[(3)^2 + (-4)^2]
AB = √(9 + 16)
AB = √25
AB = 5
C(3,-5) D(7,-2)
Distance CD ; x1 = 3, y1 = - 5, x2 = 7, y2 = - 2
CD = √[(X2 - x1)^2 + (y2 - y1)^2]
CD = √[(7 - 3)^2 + (-2 - (-5))^2]
CD = √[( 4 )^2 + (-2 + 5)^2]
CD = √[(4)^2 + (3)^2]
CD = √(16 + 9)
CD = √25
CD = 5
CD = AB, Hence, AB is Congruent to CD