Answer:
i believe the answer you are looking for is 1?
Step-by-step explanation:
Answer:
(a)Length =2 feet
(b)Width =2 feet
(c)Height=3 feet
Step-by-step explanation:
Let the dimensions of the box be x, y and z
The rectangular box has a square base.
Therefore, Volume of the box
Volume of the box

The material for the base costs
, the material for the sides costs
, and the material for the top costs
.
Area of the base 
Cost of the Base 
Area of the sides 
Cost of the sides=
Area of the Top 
Cost of the Base 
Total Cost, 
Substituting 

To minimize C(x), we solve for the derivative and obtain its critical point
![C'(x)=\dfrac{0.6x^3-4.8}{x^2}\\Setting \:C'(x)=0\\0.6x^3-4.8=0\\0.6x^3=4.8\\x^3=4.8\div 0.6\\x^3=8\\x=\sqrt[3]{8}=2](https://tex.z-dn.net/?f=C%27%28x%29%3D%5Cdfrac%7B0.6x%5E3-4.8%7D%7Bx%5E2%7D%5C%5CSetting%20%5C%3AC%27%28x%29%3D0%5C%5C0.6x%5E3-4.8%3D0%5C%5C0.6x%5E3%3D4.8%5C%5Cx%5E3%3D4.8%5Cdiv%200.6%5C%5Cx%5E3%3D8%5C%5Cx%3D%5Csqrt%5B3%5D%7B8%7D%3D2)
Recall: 
Therefore, the dimensions that minimizes the cost of the box are:
(a)Length =2 feet
(b)Width =2 feet
(c)Height=3 feet
Answer:
Binomial; \mu p=87.5, \sigma p=7.542
Step-by-step explanation:
- a distribution is said be a binomial distribution iff
- The probability of success of that event( let it be p) is same for every trial
- each trial should have 2 outcome : p or (1-p) i.e, success or failure only.
- there are fixed number of trials (n)
- the trials are independent
- here, the trials are obviously independent ( because, one person's debt doesn't influence the other person's)
- the probability of success(0.35) is same for every trial
(35/100=0.35 is the required p here)
[since, the formula for
]
[since, the formula for [tex]\sigma _{p} =\sqrt{n*(p)*(1-p)}
- therefore, it is Binomial; \mu p=87.5, \sigma p=7.542
The <u>correct answer</u> is:
B) The variables are height and time. For the first part of the graph, the height is increasing slowly, which means the hiker is walking up a gentle slope. Flat parts of the graph show where the elevation does not change, which means the trail is flat here. The steep part at the end of the graph shows that the hiker is descending a steep incline.
Explanation:
The variables are marked on the graph. Time is marked along the x-axis, which means it is the independent variable. Height is marked along the y-axis, which means it is the dependent variable.
The first part of the graph rises slowly. This means the elevation does not change much over the time; this would be consistent with a gentle slope being climbed.
The flat areas are where the elevation does not change. This would be consistent with the hiker resting.
The steep decrease at the end shows that the elevation goes down quickly. This is consistent with the hiker climbing down a steep slope.