Answer:
Step-by-step explanation:
a)
Let x unit length of rope
Riemann sum

Weight = 0.3x
work done = 0.3xdx
The required region is 0<x<60
Thus, the required work is
![W=\int\limits^{60}_0 {0.3x} \, dx \\\\=0.3[\frac{x^2}{2}]\imits^{60}_0\\\\=0.15(60)^2\\=(0.15)(3600)\\\\W=540ft-lb](https://tex.z-dn.net/?f=W%3D%5Cint%5Climits%5E%7B60%7D_0%20%7B0.3x%7D%20%5C%2C%20dx%20%5C%5C%5C%5C%3D0.3%5B%5Cfrac%7Bx%5E2%7D%7B2%7D%5D%5Cimits%5E%7B60%7D_0%5C%5C%5C%5C%3D0.15%2860%29%5E2%5C%5C%3D%280.15%29%283600%29%5C%5C%5C%5CW%3D540ft-lb)
b)
Let x unit length of rope from bottom
The Riemann sum in two parts.
First half weight is = 0.3x
The second half weight is = (0.3)(60 - x)
Thus, the Riemann sum is

The first weight is 0.3x when 0<x<30.
The second half weight is = 0.3(60-x) when 30<x<60
Thus, the work done is

Consider,
![W=\int\limits^{30}_0 {0.3x} \, dx +\int\limits^{60}_{30} {(0.3)(60-x)} \, dx\\\\=[0.15x^2]^{30}_0-0.15[60-x^2]^{60}_{30}\\\\=(0.15)(30)^2-(0.15)(60-(60))^2+(0.15)(60-(30))^2 \\\\=135-0+135\\\\W=270ft-lb](https://tex.z-dn.net/?f=W%3D%5Cint%5Climits%5E%7B30%7D_0%20%7B0.3x%7D%20%5C%2C%20dx%20%2B%5Cint%5Climits%5E%7B60%7D_%7B30%7D%20%7B%280.3%29%2860-x%29%7D%20%5C%2C%20dx%5C%5C%5C%5C%3D%5B0.15x%5E2%5D%5E%7B30%7D_0-0.15%5B60-x%5E2%5D%5E%7B60%7D_%7B30%7D%5C%5C%5C%5C%3D%280.15%29%2830%29%5E2-%280.15%29%2860-%2860%29%29%5E2%2B%280.15%29%2860-%2830%29%29%5E2%20%5C%5C%5C%5C%3D135-0%2B135%5C%5C%5C%5CW%3D270ft-lb)