Answer:
Step-by-step explanation:
We have volume of cone as

and for a cone always r/h = constant
Given that r' = rate of change of radius = -7 inches/sec
(Negative sign because decresing)
V' =- 948 in^3/sec
Radius = 99 inches and volume = 525 inches
Height at this instant = 
Let us differentiate the volume equation with respect to t using product rule
![V=\frac{1}{3} \pi r^2 h\\V' = \frac{1}{3} \pi[2rhr'+r^2 h']\\-948 = \frac{1}{3} \pi[2(99)(-7)(\frac{0.1607}{\pi})+99^2 h']\\](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B1%7D%7B3%7D%20%5Cpi%20r%5E2%20h%5C%5CV%27%20%3D%20%5Cfrac%7B1%7D%7B3%7D%20%5Cpi%5B2rhr%27%2Br%5E2%20h%27%5D%5C%5C-948%20%3D%20%5Cfrac%7B1%7D%7B3%7D%20%5Cpi%5B2%2899%29%28-7%29%28%5Cfrac%7B0.1607%7D%7B%5Cpi%7D%29%2B99%5E2%20h%27%5D%5C%5C)
![-948 = \frac{1}{3} \pi[2(99)(-7)(\frac{0.1607}{\pi})+99^2 h']\\-948 = 33(3.14)(-2.25/3.14 + 99 h')\\-9.149=-0.72+99h'\\-8.429 = 99h'\\h' = 0.08514](https://tex.z-dn.net/?f=-948%20%3D%20%5Cfrac%7B1%7D%7B3%7D%20%5Cpi%5B2%2899%29%28-7%29%28%5Cfrac%7B0.1607%7D%7B%5Cpi%7D%29%2B99%5E2%20h%27%5D%5C%5C-948%20%3D%2033%283.14%29%28-2.25%2F3.14%20%20%2B%2099%20h%27%29%5C%5C-9.149%3D-0.72%2B99h%27%5C%5C-8.429%20%3D%2099h%27%5C%5Ch%27%20%3D%200.08514)
Rate of change of height = 0.08514 in/sec
Answer:
1. -9
2. -17
3. -4
4. -11
5. -17
6. -2
7. -20
8. 11
9. 22
10. 36
Have a good day! And do you mind marking me brainliest? much appreciated :)
Answer:
30
Step-by-step explanation:
80% of 30 is 24 (u can use a calculator if you would like to check the answer but it is 30)
Answer: look at the minimum in the graph
Step-by-step explanation: Minumum as in of the graphed thing and the minimum/maximum of it or the answer to y or x because that’s impossible