Answer:
Explanation:
This takes place in the stomata.
The correct answer is B combustion.
Lavoisier’s oxygen theory of combustion was one of his most notable contribution to science and earned him the title of the “father of modern chemistry”. He recognized the combustible property of oxygen and that phosphorus and other metallic elements increased in terms of weight when burned.
Given what we know, we can confirm that the tree with the fungi will be more likely to survive.
<h3>Why would this tree survive over the other one?</h3>
This has to do with the benefit from the symbiotic relationship established with the fungi. In exchange for nutrients to live, the fungi offer the tree protection from pathogens such as the one it is being injected with.
Therefore, we can confirm that the tree with the fungi will be more likely to survive.
To learn more about symbiotic relationships visit:
brainly.com/question/26741757?referrer=searchResults
Answer:
Flat strip of a land,raised bank ,or terrace bordering a river or canal
Explanation:
A path or grass strip beside a road
Answer:
When a muscle cell contracts, the myosin heads each produce a single power stroke.
Explanation:
In rest, attraction strengths between myosin and actin filaments are inhibited by the tropomyosin. When the muscle fiber membrane depolarizes, the action potential caused by this depolarization enters the t-tubules depolarizing the inner portion of the muscle fiber. This activates calcium channels in the T tubules membrane and releases calcium into the sarcolemma. At this point, <em>tropomyosin is obstructing binding sites for myosin on the thin filament</em>. When calcium binds to the troponin C, the troponin T alters the tropomyosin by moving it and then unblocks the binding sites. Myosin heads bind to the uncovered actin-binding sites forming cross-bridges, and while doing it ATP is transformed into ADP and inorganic phosphate which is liberated. Myofilaments slide impulsed by chemical energy collected in myosin heads, <u>producing a power stroke</u>. The power stroke initiates when the myosin cross-bridge binds to actin. As they slide, ADP molecules are released. A new ATP links to myosin heads and breaks the bindings to the actin filament. Then ATP splits into ADP and phosphate, and the energy produced is accumulated in the myosin heads, which starts a new binding cycle to actin. Z-bands are then pulled toward each other, thus shortening the sarcomere and the I-band, and producing muscle fiber contraction.