Answer: compare the relative strength of coefficients.
Step-by-step explanation: The Coefficient of determination usually denoted as R^2 is obtained by taking the squared value of the correlation Coefficient (R). It's value ranges from 0 to 1 and the value obtained gives the proportion of variation in the dependent variable which could be attributed to it's correlation or relationship to th independent variable. With a R^2 value close to 1, this means a large portion of Variation in a variable A could be explained due to changes in variable B while a low value signifies a low variance between the variables. Hence, the Coefficient of determination is used in comparing the relative strength of the Coefficients in other to establish whether a weak or strong relationship exist.
We can answer the first part of the question not taking intersecting function into account. The domain of
is all the numbers, x∈(-∞, +∞) and the range is y∈(-∞, 36]. We can observe these results with the help of a graph, as well. Since we are talking about the rainbow, the values above the ground level will make sense. In this case, we will take into account the range as it changes between 0 and 36, included and the domain between -6 and 6. Here (0;36) is the y-intercept and (-6;0) and (6;0) are the x-intercepts of the parabola.
Since in our problem, the linear function that intersects parabola is not given, we have to provide it by ourselves according to the conditions of the problem. It could be any line intersecting parabola in two points. One important point is that the y-intercept has to be no more than 36. Considering these conditions, we can set our linear function to be
. We can observe the points that we included in the table (they have been given with orange dots in the graph and the table is attached below). We can see that the values of the function (values of y) are positive. Indeed, we are discussing the part of the rainbow above the ground level.
The system of equations with linear and quadratic functions has got two solutions and we can observe that result from the graph. The solutions are (-5.823; 2.088) and (5.323; 7.662). The solutions are the intersection points.
Answer:
6 2 6 2 6 6 1
Step-by-step explanation:
just did it on ed.
For this case we must find the value of the following expression:

When:

Substituting the given values we have:

Finally, the value of the expression is 394.
Answer:
The value of the expression is 394.