Answer:
x² + 2x + (3 / (x − 1))
Step-by-step explanation:
Start by setting up the division:
.........____________
x − 1 | x³ + x² − 2x + 3
Start with the first term, x³.  Divided by x, that's x².  So:
.........____x²______
x − 1 | x³ + x² − 2x + 3
Multiply x − 1 by x², subtract the result, and drop down the next term:
.........____x²______
x − 1 | x³ + x² − 2x + 3
.........-(x³ − x²)
...........----------
...................2x² − 2x
Repeat the process over again.  First term is 2x².  Divided by x is 2x.  So:
.........____x² + 2x __
x − 1 | x³ + x² − 2x + 3
.........-(x³ − x²)
...........----------
...................2x² − 2x
Multiply, subtract the result, and drop down the next term:
.........____x² + 2x __
x − 1 | x³ + x² − 2x + 3
.........-(x³ − x²)
...........----------
...................2x² − 2x
.................-(2x² − 2x)
.................---------------
.....................................3
x doesn't divide into 3, so that's the remainder.
Therefore, the answer is:
x² + 2x + (3 / (x − 1))
 
        
             
        
        
        
Answer: -20/3
Step-by-step explanation:
 
        
                    
             
        
        
        
First, get common denominators 
At the same time, turn these into mixed numbers
27/8 + x = 44/8
Subtract 27/8 from both sides
x = 2 1/8 pounds
Let’s x be how many more pounds the baby needs
        
             
        
        
        
The equations of the functions are y = -4(x + 1)^2 + 2, y = 2(x - 2)^2 + 1 and y = -(x - 1)^2 - 2
<h3>How to determine the functions?</h3>
A quadratic function is represented as:
y = a(x - h)^2 + k
<u>Question #6</u>
The vertex of the graph is
(h, k) = (-1, 2)
So, we have:
y = a(x + 1)^2 + 2
The graph pass through the f(0) = -2
So, we have:
-2 = a(0 + 1)^2 + 2
Evaluate the like terms
a = -4
Substitute a = -4 in y = a(x + 1)^2 + 2
y = -4(x + 1)^2 + 2
<u>Question #7</u>
The vertex of the graph is
(h, k) = (2, 1)
So, we have:
y = a(x - 2)^2 + 1
The graph pass through (1, 3)
So, we have:
3 = a(1 - 2)^2 + 1
Evaluate the like terms
a = 2
Substitute a = 2 in y = a(x - 2)^2 + 1
y = 2(x - 2)^2 + 1
<u>Question #8</u>
The vertex of the graph is
(h, k) = (1, -2)
So, we have:
y = a(x - 1)^2 - 2
The graph pass through (0, -3)
So, we have:
-3 = a(0 - 1)^2 - 2
Evaluate the like terms
a = -1
Substitute a = -1 in y = a(x - 1)^2 - 2
y = -(x - 1)^2 - 2
Hence, the equations of the functions are y = -4(x + 1)^2 + 2, y = 2(x - 2)^2 + 1 and y = -(x - 1)^2 - 2
Read more about parabola at:
brainly.com/question/1480401
#SPJ1
 
        
             
        
        
        
The length of the ramp is unknown. 
If 6 ramps were cut from a board that is 12 1/2 feet long, the ramps would be about 2 feet long each which seems like a reasonable answer. The questions regarding how many boards are cut would need the length of the ramps. Lets say that the length is x. You can get 12 1/2 divided by x boards. In order to find out how much is left over, take the number of boards made, multiply it by how long they are. This product is then subracted from 12 1/2.