The surface area of the triangular prism is 686.6 cm².
Step-by-step explanation:
Step 1:
The volume of a triangular prism can be determined by multiplying its area of the triangular base with the length of the prism.
The base triangle has a base length of 10 cm and assume it has a height of h m.
The volume of the prism
The height of the triangle is 8.66 cm.
Step 2:
The surface area of the triangle is obtained by adding all the areas of the shapes in the prism. There are 2 triangles and 3 rectangles in a triangular prism.
The triangles have a base length of 10 cm and a height of 8.66 cm. A triangles area is half the product of its base length and height.
The rectangles all have a length of 20 cm and a width of 10 cm. The area of a rectangle is the product of its length and width.
The area of the 2 triangles ![= 2 [\frac{1}{2} (10)(8.66)] = 86.6.](https://tex.z-dn.net/?f=%3D%202%20%5B%5Cfrac%7B1%7D%7B2%7D%20%2810%29%288.66%29%5D%20%3D%2086.6.)
The area of the 3 rectangle ![= 3[(20)(10)] = 600.](https://tex.z-dn.net/?f=%3D%203%5B%2820%29%2810%29%5D%20%3D%20600.)
Step 3:
The surface area of the triangular prism 
The surface area of the prism is 686.6 cm².
Answer:
again it has a ratio
Step-by-step explanation:
follow this steps.
firstly look at the side and you got the ratio 24/16
secondly write 42/? and multiply by 24/16
the answer is ?*24=42*16 and divide it by 8 and write again ?*3=42*2 and finally the answer is ?=28
I think is complementary but i'm not sure
Answer:
why are the number wierd i do it but idk the temp for the second one
Step-by-step explanation:
His/her lowered score was most likely due to statistical regression.
<h3>How to determine the reason?</h3>
The missing options in the question are:
A. compensation rivalry B. Demoralization C. Differential selection
D. Testing E. Statistical regression
From the question, we have:
- September = 99th percentile
- February = 90th percentile
A change (whether higher or lower) in the score is caused by statistical regression.
This is so because several variables could attribute to the change in the score.
The relationship between these variables is referred to as statistical regression
Read more about statistical regression at:
brainly.com/question/25987747
#SPJ12