3·m - 2/3 - 2·m + 1/4 = 2/12
m - 2/3 + 1/4 = 2/12
m = 2/12 - 3/12 + 8/12
m = 7/12
Answer:
1)
Volume of pyramid = 1/3(Ab)(h)
Where Ab is the area of base, h is height
Volume of cone = 1/3(Ab)(h)
a) Their formula for finding volume is same. Also, their painting heads are same.
b) Pyramids have a tetragonal base while cones have a polygonal base
2) Pyramids
Volume of cone = (1/3) πr²h
Since Area of a circle = πr²
So
Volume of pyramid = (1/3)(A)(h)
So we can use the formula of a circle in cone's formula
P=s1+s2+s3
Move +s1 to the other side. Sign changes from +s1 to -s1
P-s1=s1-s1+s2+s3
p-s1=s2+s3
Move s2 to the other side. Sign changes from s2 to -s2
p-s1-s2=s2-s2+s3
p-s1-s2=s3
Answer: p-s1-s2=s3
X=3 because you subtract the three on both sides to get x alone. So you get: 7x=21 then you divide seven by 21 and get x=3
Resposta:
Primer rectangle:
Amplada = 11
Longitud = 14
Segon rectangle:
Amplada = 12
Longitud = 15
Tercer rectangle:
Amplada = 13
Longitud = 16
Explicació pas a pas:
Donat que:
Primer rectangle:
Amplada = x
Longitud = x + 3
2n rectangle:
Augment de la dimensió d'1 cm respecte al primer rectangle;
Amplada = x + 1
Longitud = x + 4
3r rectangle:
Augment de la dimensió de 2 cm respecte al primer rectangle;
Amplada = x + 2
Longitud = x + 5
Suma dels tres perímetres del rectangle:
Perímetre d'un rectangle: 2 (l + O)
Primer rectangle:
2 (x + x + 3) = 2 (2x + 3) = 4x + 6
2n:
2 (x + 1 + x + 4) = 2 (2x + 5) = 4x + 10
3r:
2 (x + 2 + x + 5) = 2 (2x + 7) = 4x + 14
Suma de perímetres = 162
(4x + 6 + 4x + 10 + 4x + 14) = 162
12x + 30 = 162
12x = 162 - 30
12x = 130
x = 11
Per tant,
Primer rectangle:
Amplada = 11
Longitud = 11 + 3 = 14
2n rectangle:
Amplada = 11 + 1 = 12
Longitud = 11 + 4 = 15
3r rectangle:
Amplada = 11 + 2 = 13
Longitud = 11 + 5 = 16