Answer:
a) k should be equal to 3/16 in order for f to be a density function.
b) The probability that the measurement of a random error is less than 1/2 is 0.7734
c) The probability that the magnitude of a random error is more than 0.8 is 0.164
Step-by-step explanation:
a) In order to find k we need to integrate f between -1 and 1 and equalize the result to 1, so that f is a density function.
![1 = k \int\limits^1_{-1} {(3-x^2)} \, dx = k * (3x-\frac{x^3}{3})|_{x=-1}^{x = 1} = k*[(3-1/3) - (-3 + 1/3)] = 16k/3](https://tex.z-dn.net/?f=1%20%3D%20k%20%5Cint%5Climits%5E1_%7B-1%7D%20%7B%283-x%5E2%29%7D%20%5C%2C%20dx%20%3D%20k%20%20%2A%20%20%283x-%5Cfrac%7Bx%5E3%7D%7B3%7D%29%7C_%7Bx%3D-1%7D%5E%7Bx%20%3D%201%7D%20%3D%20k%2A%5B%283-1%2F3%29%20-%20%28-3%20%2B%201%2F3%29%5D%20%3D%2016k%2F3)
16k/3 = 1
k = 3/16
b) For this probability we have to integrate f between -1 and 0.5 (since f takes the value 0 for lower values than -1)
![P(X < 1/2) = \int\limits^{0.5}_{-1} {\frac{3}{16}(3-x^2)} \, dx = \frac{3}{16} [(3x-\frac{x^3}{3}) |_{x=-1}^{x=0.5}] =\frac{3}{16} *(1.458333 - (-3+1/3)) = 0.7734](https://tex.z-dn.net/?f=P%28X%20%3C%201%2F2%29%20%3D%20%5Cint%5Climits%5E%7B0.5%7D_%7B-1%7D%20%7B%5Cfrac%7B3%7D%7B16%7D%283-x%5E2%29%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7B3%7D%7B16%7D%20%5B%283x-%5Cfrac%7Bx%5E3%7D%7B3%7D%29%20%7C_%7Bx%3D-1%7D%5E%7Bx%3D0.5%7D%5D%20%3D%5Cfrac%7B3%7D%7B16%7D%20%2A%281.458333%20-%20%28-3%2B1%2F3%29%29%20%3D%200.7734)
c) For |x| to be greater than 0.8, either x>0.8 or x < -0.8. We should integrate f between 0.8 and 1, because we want values greater than 0.8, and f is 0 after 1; and between -1 and 0.8.
