The average intake rate is (21,340 animals)/(52 weeks) ≈ 410.4 animals/week
Answer: $40
Step-by-step explanation:
The key formula to use for this problem is the simple interest formula, which is
; where I is the interest earned, p is the principal (initial) amount, r is the interest rate, and t is the amount of time that passes.
Since we know that both investments have the same interest rate, we can use the information from the first part of the problem to solve for the interest rate. Using algebra, we can rearrange the simple interest formula to solve for the interest rate:
. We know that our interest earned is $24 and our principal amount is $300. To make things easier, we'll also convert months to years, which is easy to do since we know that 12 months = 1 year. This gives us our value for the amount of time that passes. Now, all we have to do is plug in our values into the rearranged equation above.
We should now have: 
Now, to find the interest earned from the $500 investment, we just need to plug in our values from the second part of the problem, along with our calculated interest rate of 0.08, into the original formula of 
This should result in 
Therefore, James will receive $40 on his $500 investment after 12 months.
Sandra has .5 of flour left after making 3 batches of cookies
Well, you could assign a letter to each piece of luggage like so...
A, B, C, D, E, F, G
What you could then do is set it against a table (a configuration table to be precise) with the same letters, and repeat the process again. If the order of these pieces of luggage also has to be taken into account, you'll end up with more configurations.
My answer and workings are below...
35 arrangements without order taken into consideration, because there are 35 ways in which to select 3 objects from the 7 objects.
210 arrangements (35 x 6) when order is taken into consideration.
*There are 6 ways to configure 3 letters.
Alternative way to solve the problem...
Produce Pascal's triangle. If you want to know how many ways in which you can choose 3 objects from 7, select (7 3) in Pascal's triangle which is equal to 35. Now, there are 6 ways in which to configure 3 objects if you are concerned about order.