The angle between the planes is the same as the angle between their normal vectors, which are
<em>n</em><em>₁</em> = ⟨1, 1, 1⟩
<em>n</em><em>₂</em> = ⟨4, 3, 1⟩
The angle <em>θ</em> between the vectors is such that
⟨1, 1, 1⟩ • ⟨4, 3, 1⟩ = ||⟨1, 1, 1⟩|| ||⟨4, 3, 1⟩|| cos(<em>θ</em>)
Solve for cos(<em>θ</em>) :
4 + 3 + 1 = √(1² + 1² + 1²) √(4² + 3² + 1²) cos(<em>θ</em>)
8 = √3 √26 cos(<em>θ</em>)
cos(<em>θ</em>) = 8/√78