A. ) The probability of all 3 parts are non defective :-
48:3
B.) The probability that the part selected from box 1 is defective :-
1:1
The probability of the parts selected from box 2 and 3 are non defective :-
49:2
C.) The probability that two parts are non-defective and one part is defective :-
48:2 / 1:1
------------------------------------------❌❌❌❌❌❌--------------------------------------------
The correct answer is: [A]: " 4x³ + x² − 11x + 15 " .
_______________________________________________________
<u>Note</u>:
_______________________________________________________
(6x³ − 4x + 5) − (2x³ − x² + 7x − 10) ;
= (6x³ − 4x + 5) − 1(2x³ − x² + 7x − 10) ;
_________________________________________
Examine the following portion of the expression:
_________________________________________
" − 1(2x³ − x² + 7x − 10) " ;
= (-1 * 2x³) − (-1 * x²) + (-1 * 7x) − (-1 * 10) ;
= (-2x³) − (-1x²) + (-7x) − (-10) ;
= (-2x³) + 1x² − 7x + 10 ;
= " − 2x³ + 1x² − 7x + 10 " ;
Now, bring down the other part:
6x³ − 4x + 5 − 2x³ + 1x² − 7x + 10 ;
Combine the "like terms" :
6x³ − 2x³ = + 4x³ ;
− 4x − 7x = − 11x ;
+ 5 + 10 = + 15 ;
and bring down the:
+ 1x² ( which equals: " x² ") ;
____________________________________________________
And rewrite:
____________________________________________________
→ " 4x³ + x² − 11x + 15 " ;
→ which is: Answer choice: [A]: " 4x³ + x² − 11x + 15 " .
____________________________________________________
Answer:
Expectation number of books a customer will purchase = 1.3
Step-by-step explanation:
x : 0 1 2
p(x) :0.2, 0.3, and 0.5
Expectation
E(X) = ∑x P(x)
= 0 X 0.2 +1 X 0.3+ 2 X 0.5
= 1.3
Expectation E(X) = 1.3
Expectation number of books a customer will purchase = 1.3