Answer:
Given A triangle ABC in which
∠C =90°,∠A=20° and CD ⊥ AB.
In Δ ABC
⇒∠A + ∠B +∠C=180° [ Angle sum property of triangle]
⇒20° + ∠B + 90°=180°
⇒∠B+110° =180°
∠B =180° -110°
∠B = 70°
In Δ B DC
∠BDC =90°,∠B =70°,∠BC D=?
∠BDC +,∠B+∠BC D=180°[ angle sum property of triangle]
90° + 70°+∠BC D =180°
∠BC D=180°- 160°
∠BC D = 20°
In Δ AC D
∠A=20°, ∠ADC=90°,∠AC D=?
∠A + ∠ADC +∠AC D=180° [angle sum property of triangle]
20°+90°+∠AC D=180°
110° +∠AC D=180°
∠AC D=180°-110°
∠AC D=70°
So solution are, ∠AC D=70°,∠ BC D=20°,∠DB C=70°
Answer:
These are correct! Nice Job!!
Step-by-step explanation:
If the line segment point is D(-5, 10) and E(a,b) and the midpoint of the segment is F(13, -2) that mean
DE= 2*DF
You can directly find the distance of AC
Xdf= Xf-Xd= 13 - (-5)= 18
Ydf= Yf - Yd= -2 - 10= -12
Then add the distance of AB( which is 2*AC) to point D
Xe= a = Xd + 2*Xdf
a= -5 +2*18= 31
Ye= b = Yd + 2Yf
b= 10+ 2*-12= -14
<span>absolute difference between a and b:
|b-a|= </span>|-14-31|= 45
Answer:
7 packages of cinnamon
Step-by-step explanation:
3.15/0.45 = 7