Answer:
The endpoints of the line segment CD are:
$$C=(x_1,y_1)= (-4, 8) \\ D= (x_2,y_2)= (8, -4) $$
We find the midpoint using th
Answer:
I think f(0) = g(2) is the answer, I'm very sure.
Step-by-step explanation:
Answer:
I could do 1 and 3
1) 2x-3y=-2 ....1
-
2x+y=14......2
=-4y=-16
y=4
<u>Substitute</u><u> </u><u>(</u><u>y</u><u>=</u><u>4</u><u>)</u><u> </u><u>into</u><u> </u><u>equation</u><u> </u><u>1</u>
2x-3 (4)=-2
2x-12=-2
2x=-2+12
2x=10
×=5
3) 5x+5y=20....1
-
-3x+5y=4......2
=8x=16
x=2
<u>S</u><u>ubstitute</u><u> </u><u>(</u><u>x</u><u>=</u><u>2</u><u>)</u><u> </u><u>into</u><u> </u><u>equation</u><u> </u><u>1</u>
<u>5</u><u> </u><u>(</u><u>2</u><u>)</u><u>+</u><u>5y</u><u>=</u><u>20</u>
<u>10</u><u>+</u><u>5y</u><u>=</u><u>20</u>
<u>5y</u><u>=</u><u>20-10</u>
<u>5y</u><u>=</u><u>10</u>
<u>y</u><u>=</u><u>2</u>