Answer:
If the graph crosses the x-axis and appears almost linear at the intercept, it is a single zero. If the graph touches the x-axis and bounces off of the axis, it is a zero with even multiplicity. If the graph crosses the x-axis at a zero, it is a zero with odd multiplicity. The sum of the multiplicities is n.
The original price was $50.
To find this we need to start with the price you paid ($28). We then use this cost to find the pre-coupon price. Since the coupon affords a 20% discount, that means you pay for 80%. To solve this, simply divide the price you paid by the percentage you paid.
$28/.80 = $35.
Now that we have the pre-coupon price ($35), we can use that to find the original price. Again, we'd want to divide that by the percentage you paid for, which is 70%.
$35/.70 = $50
Answer:
The price of 1 adult ticket is 12 dollars, and the price of a ticket for one student is 7 dollars
Step-by-step explanation:
Make a system of equations for the two days that the play was shown.
Let x = the price of an adult ticket
Let y = the price of a student ticket
For the first day:
<h3>9x+8y=164</h3>
For the second day:
<h3>2x+7y=73</h3>
Now, we can solve using the elimination method. Multiply the first equation by 2 and the second equation by 9. Then swap the order of the equations.
<h3>18x+63y= 657</h3><h3>-</h3><h3>18x+16y= 328</h3><h3>0x+ 47y= 329</h3><h3>divide both sides by 47</h3><h3>y = 7</h3><h3>Plug in 7 for y for the 2nd equation</h3><h3>2x+7(7)=73</h3><h3>2x+49=73</h3><h3>subtract 49 from both sides</h3><h3>2x= 24</h3><h3>divide both sides by 2</h3><h3>x = 12 </h3><h3>Check:</h3><h3>2(12)+7(7)=73</h3><h3>24+49= 73!</h3>
Sent a picture of the solution to the problem (s).