Answer:
(4 2/7) x (11 1/4) = 48 3/14
Step-by-step explanation:
Answer:
For the first question, he would raise $38.
Step-by-step explanation:
1 x 12 = $12
2 x 13 = $26
12 + 26 = $38
Answer: D
<u>Step-by-step explanation:</u>
The first matrix contains the coefficients of the x- and y- values for both equations (top row is the top equation and the bottom row is the bottom equation. The second matrix contains what each equation is equal to.
![\begin{array}{c}2x-y\\x-6y\end{array}\qquad \rightarrow \qquad \left[\begin{array}{cc}2&-1\\1&-6\end{array}\right] \\\\\\\begin{array}{c}-6\\13\end{array}\qquad \rightarrow \qquad \left[\begin{array}{c}-6\\13\end{array}\right]](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bc%7D2x-y%5C%5Cx-6y%5Cend%7Barray%7D%5Cqquad%20%5Crightarrow%20%5Cqquad%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%26-1%5C%5C1%26-6%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5C%5Cbegin%7Barray%7D%7Bc%7D-6%5C%5C13%5Cend%7Barray%7D%5Cqquad%20%5Crightarrow%20%5Cqquad%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-6%5C%5C13%5Cend%7Barray%7D%5Cright%5D)
The product will result in the solution for the x- and y-values of the system.
Answer: 
Step-by-step explanation:
<h3>
The complete exercise is: "Omar works as a tutor for $15 an hour and as a waiter for $7 an hour. This month, he worked a combined total of 83 hours at his two jobs. Let "t" be the number of hours Omar worked as a tutor this month. Write an expression for the combined total dollar amount he earned this month."</h3><h3 />
Let be "t" the number of hours Omar worked as a tutor this month and "w" the number of hours Omar worked as a waiter this month.
Based on the data given in the exercise, you know that Omar worked a combined total of 83 hours this month.
Then, you can represent the number of hours he worked as a waiter this month with this equation:

Since he earns $15 per hour working has a tutor and $7 per hour working as a waiter, you can write the following expresion to represent the total money earned:

Since
, you can substitute it into the expression and then simplify it in order to find the final expression that represents the total amount of money Omar earned this month.
This is:

First term is -7, so a_1 = -7
To get the next term, we add on 4. We can see this if we subtract like so
d = (2nd term) - (1st term) = (-3) - (-7) = -3+7 = 4
So d = 4 is the common difference.
Apply a_1 = -7 and d = 4 to get...
a_n = a_1 + d*(n-1)
a_n = -7 + 4*(n-1)
a_n = -7 + (n-1)*4
Answer: Choice A