Answer:
Input Data :
Point 1(xA,yA)(xA,yA) = (4, 3)
Point 2(xB,yB)(xB,yB) = (3, -2)
Objective :
Find the distance between two given points on a line?
Formula :
Distance between two points = √(xB−xA)2+(yB−yA)2(xB-xA)2+(yB-yA)2
Solution :
Distance between two points = √(3−4)2+(−2−3)2(3-4)2+(-2-3)2
= √(−1)2+(−5)2(-1)2+(-5)2
= √1+251+25
= √2626 = 5.099
Distance between points (4, 3) and (3, -2) is 5.099
The bearings from b to a is that o95 and it can’t be no longer than what I put so it has to be 20
Answer: 7°
Explanation:
FBD = EBC
2x + 3 = 9x - 11
-7x = -14
x = -14/-7
x = 2
EBC = 9(2) - 11 = 18 - 11 = 7°
Answer:
50 soldiers must be transferred elsewhere.
Step-by-step explanation:
We solve this question by proportions, using a rule of three.
As the number of soldiers decrease, the provisions last for more time. This means that the measures are inversely proportional, and we have an inverse rule of three, using line multiplication, instead of cross.
30 days of provisions - 200 soldiers
40 days of provisions - x soldiers

Simplifying by 40

The provisions will last for 40 days with 150 soldiers, which means that 200 - 150 = 50 soldiers must be transferred elsewhere.
Answer:

Step-by-step explanation:

Divide both sides by -1:

x > 21 is your answer.