Given the domain {-4, 0, 5}, what is the range for the relation 12x 6y = 24? a. {2, 4, 9} b. {-4, 4, 14} c. {12, 4, -6} d. {-12,
xz_007 [3.2K]
The domain of the function 12x + 6y = 24 exists {-4, 0, 5}, then the range of the function exists {12, 4, -6}.
<h3>How to determine the range of a function?</h3>
Given: 12x + 6y = 24
Here x stands for the input and y stands for the output
Replacing y with f(x)
12x + 6f(x) = 24
6f(x) = 24 - 12x
f(x) = (24 - 12x)/6
Domain = {-4, 0, 5}
Put the elements of the domain, one by one, to estimate the range
f(-4) = (24 - 12((-4))/6
= (72)/6 = 12
f(0) = (24 - 12(0)/6
= (24)/6 = 4
f(5) = (24 - 12(5)/6
= (-36)/6 = -6
The range exists {12, 4, -6}
Therefore, the correct answer is option c. {12, 4, -6}.
To learn more about Range, Domain and functions refer to:
brainly.com/question/1942755
#SPJ4
25 metres. Because 1/10th of a kilometre is a 100 metres. And four athletes divided by 100 metres is 25 metres.
3 squares = 4 circles, so (number of squares)/(number of circles) = 3/4.
3/4 = 12/16
:::::
4 squares = 2 circles, so (number of squares)/(number of circles) = 4/2.
4/2 = 2/1
:::::
2 squares = 5 circles, so (number of squares)/(number of circles) = 2/5.
2/5 = 4/10
Graph the equations and locate the intersection.
(-3,6)
Answer:
c
Step-by-step explanation: