Answer:
The sample correlation coefficient is, <em>r</em> = 0.8722.
The equation of the least-squares line is:

Step-by-step explanation:
(a)
The scatter diagram displaying the data for <em>X </em>: total number of jobs in a given neighborhood and <em>Y</em> : number of entry-level jobs in the same neighborhood is shown below.
(b)
The table attached below verifies the values of
.
The sample correlation coefficient is:
![\begin{aligned}r~&=~\frac{n\cdot\sum{XY} - \sum{X}\cdot\sum{Y}} {\sqrt{\left[n \sum{X^2}-\left(\sum{X}\right)^2\right] \cdot \left[n \sum{Y^2}-\left(\sum{Y}\right)^2\right]}} \\r~&=~\frac{ 6 \cdot 1163 - 201 \cdot 30 } {\sqrt{\left[ 6 \cdot 7759 - 201^2 \right] \cdot \left[ 6 \cdot 182 - 30^2 \right] }} \approx 0.8722\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7Dr~%26%3D~%5Cfrac%7Bn%5Ccdot%5Csum%7BXY%7D%20-%20%5Csum%7BX%7D%5Ccdot%5Csum%7BY%7D%7D%09%09%09%09%09%09%09%09%09%7B%5Csqrt%7B%5Cleft%5Bn%20%5Csum%7BX%5E2%7D-%5Cleft%28%5Csum%7BX%7D%5Cright%29%5E2%5Cright%5D%20%5Ccdot%20%5Cleft%5Bn%20%5Csum%7BY%5E2%7D-%5Cleft%28%5Csum%7BY%7D%5Cright%29%5E2%5Cright%5D%7D%7D%20%5C%5Cr~%26%3D~%5Cfrac%7B%206%20%5Ccdot%201163%20-%20201%20%5Ccdot%2030%20%7D%09%09%09%09%09%09%09%09%09%7B%5Csqrt%7B%5Cleft%5B%206%20%5Ccdot%207759%20-%20201%5E2%20%5Cright%5D%20%5Ccdot%20%5Cleft%5B%206%20%5Ccdot%20182%20-%2030%5E2%20%5Cright%5D%20%7D%7D%20%5Capprox%200.8722%5Cend%7Baligned%7D)
Thus, the sample correlation coefficient is, <em>r</em> = 0.8722.
(c)
The slope and intercept are:

The equation of the least-squares line is:

(d)
The least-squares line is graphed in the diagram below.