Answer:
V=5.333cubit unit
Step-by-step explanation:
this problem question, we are required to evaluate the volume of the region bounded by the paraboloid z = f(x, y) = 3x² + y² and the square r: -1≤ x ≤ 1, -1 ≤ y ≤ 1
The question can be interpreted as z = f(x, y) = 3x² + y² and the square r: -1≤ x ≤ 1, -1 ≤ y ≤ 1 and we are told to evaluate the volume of the region bounded by the given paraboloid z
The volume V of integral evaluated along the limits of x and y for the 2-D figure, can be evaluated using the expression below
V = ∫∫ f(x, y) dx dy then we can now substitute and integrate accordingly.
CHECK THE ATTACHMENT BELOW FOR DETAILED EXPLATION:
Answer:
read your username :)
Step-by-step explanation:
Answer:

Step-by-step explanation:
In this cross sections problem, we can integrate from -r to +r (so that the integral covers the entire base of the solid).

The formatting for the integral did not let me put -r on the lower bound, so i replaced it with a, just know that a represents -r here.
Evaluating the integral gives use that it is equal to;

Caution: this answer may not meet your needs, but this is the answer I have come up with with the given information.
If you found this answer helpful please consider leaving 5 stars, giving it a like, or if you asked this question, mark this answer as Brainliest. Thanks!