1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
docker41 [41]
3 years ago
7

In a right triangle, the hypotenuse has endpoints XY, shown on the graph.

Mathematics
1 answer:
mrs_skeptik [129]3 years ago
8 0

Answer: 3

Step-by-step explanation:

You might be interested in
Suppose integral [4th root(1/cos^2x - 1)]/sin(2x) dx = A<br>What is the value of the A^2?<br><br>​
Alla [95]

\large \mathbb{PROBLEM:}

\begin{array}{l} \textsf{Suppose }\displaystyle \sf \int \dfrac{\sqrt[4]{\frac{1}{\cos^2 x} - 1}}{\sin 2x}\ dx = A \\ \\ \textsf{What is the value of }\sf A^2? \end{array}

\large \mathbb{SOLUTION:}

\!\!\small \begin{array}{l} \displaystyle \sf A = \int \dfrac{\sqrt[4]{\frac{1}{\cos^2 x} - 1}}{\sin 2x}\ dx \\ \\ \textsf{Simplifying} \\ \\ \displaystyle \sf A = \int \dfrac{\sqrt[4]{\sec^2 x - 1}}{\sin 2x}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\sqrt[4]{\tan^2 x}}{\sin 2x}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\sqrt{\tan x}}{\sin 2x}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\sqrt{\tan x}}{\sin 2x}\cdot \dfrac{\sqrt{\tan x}}{\sqrt{\tan x}}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\tan x}{\sin 2x\ \sqrt{\tan x}}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\dfrac{\sin x}{\cos x}}{2\sin x \cos x \sqrt{\tan x}}\ dx\:\:\because {\scriptsize \begin{cases}\:\sf \tan x = \frac{\sin x}{\cos x} \\ \: \sf \sin 2x = 2\sin x \cos x \end{cases}} \\ \\ \displaystyle \sf A = \int \dfrac{\dfrac{1}{\cos^2 x}}{2\sqrt{\tan x}}\ dx \\ \\ \displaystyle \sf A = \int \dfrac{\sec^2 x}{2\sqrt{\tan x}}\ dx, \quad\begin{aligned}\sf let\ u &=\sf \tan x \\ \sf du &=\sf \sec^2 x\ dx \end{aligned} \\ \\ \textsf{The integral becomes} \\ \\ \displaystyle \sf A = \dfrac{1}{2}\int \dfrac{du}{\sqrt{u}} \\ \\ \sf A= \dfrac{1}{2}\cdot \dfrac{u^{-\frac{1}{2} + 1}}{-\frac{1}{2} + 1} + C = \sqrt{u} + C \\ \\ \sf A = \sqrt{\tan x} + C\ or\ \sqrt{|\tan x|} + C\textsf{ for restricted} \\ \qquad\qquad\qquad\qquad\qquad\qquad\quad \textsf{values of x} \\ \\ \therefore \boxed{\sf A^2 = (\sqrt{|\tan x|} + c)^2} \end{array}

\boxed{ \tt   \red{C}arry  \: \red{ O}n \:  \red{L}earning}  \:  \underline{\tt{5/13/22}}

4 0
2 years ago
A 10-ounce container of chocolate chips can be used to make 4 desserts. Each dessert has the same amount of chocolate chips. Whi
OlgaM077 [116]

Answer:

2.5

Step-by-step explanation:

10/4

3 0
3 years ago
Read 2 more answers
Find the volume in cubic meter (C.U.M) of each of the cuboid whose dimensions are :
Leno4ka [110]

The volume in cubic meter of the cuboid with the dimensions length = 12 m , breadth = 10m, height = 4.5 m is 540 m³

<h3 />

<h3>Volume of a cuboid:</h3>
  • v = lwh

where

l =- length

w = width

h = height

Therefore,

l = 12 m

w = 10 m

h = 4.5

v = 12 × 10 × 4.5

v = 120 × 4.5

v = 540 m³

learn more on cuboid here: brainly.com/question/14297267?referrer=searchResults

7 0
2 years ago
Read 2 more answers
What is translation for math
kolezko [41]
Where you take a word problem and turn it into an equation
5 0
3 years ago
Read 2 more answers
PLEASE HELP!!!!!
statuscvo [17]
The second one is the function
6 0
3 years ago
Read 2 more answers
Other questions:
  • Cody is twice as old as evan and seven years ago the sum of their age was 1010. find the age of each boy now.
    6·1 answer
  • Whai si the value of the digit 7 in 870,541?
    12·1 answer
  • WORTH 20 PTS.
    8·1 answer
  • John n his family went out to eat their favorite restaurant the bill for the food was $65 and they left a 20%tip for the server
    11·1 answer
  • Please help!!!!!! I will mark brainliest!!!<br>​
    8·2 answers
  • 9x8x9x8x9x8x99x678x98x567
    8·2 answers
  • Your given a side length of 7 centimeters. How many equilateral triangles can you construct using this information
    11·1 answer
  • 36 is 120% of what number
    10·2 answers
  • Find the distance between the two numbers on a number line. Write your answer as a mixed number.
    7·1 answer
  • If it is true that z^2-6=19 then z^2+6=
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!