We are given a trapezoid TRHY.
Height of the trapezoid = 13 units.
b1 = 21 units and
Area = 215 units squares.
We need to find the length of b2.
We know formula for area of a trapezoid.

Plugging values in formula.
215 =
(21+b2)× 13.
215 = 6.5(21+b2)
Dividing both sides by 6.5, we get

33.08 = 21+b2.
Subtracting 21 from both sides, we get
33.08-21 = 21-21+b2
b2 = 12.08.
<h3>Therefore, length of b2 is 12.08 units.</h3>
Answer: 70ᴼ
Step-by-step explanation:
The triangles are vertical so their angle measures are congruent.
The angles of a triangle add to equal 180ᴼ.
55 + 55 = 110
180 - 110 = 70
Answer:
12,600
Step-by-step explanation:
Not a enogh information so write more down
Answer:
B
Step-by-step explanation:
they want us to find the equation in slope intercept form
which is y= mx + b
where m = slope and b = y intercept
the slope is change in y over change in x
as y goes up 1 x goes up 1 so the slope is 1 or m=1
the y intercept is at point (0,1)
so the y intercept is 1
now we add it all together and get that the equation Is
y=x+1