1/3
2 of the books are math books and there are 6 books. This is 2/6. Now, divide both sides of the fraction by 2 to simplify it. This gives you a final answer of 1/3.
Answer:
option c is correct.
Step-by-step explanation:
![7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{16x}\right)-3\left(\sqrt[3]{8x}\right)](https://tex.z-dn.net/?f=7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B16x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B8x%7D%5Cright%29)
WE need to simplify this equation.
Solve the parenthesis of each term.
![=7\left\sqrt[3]{2x}\right-3\left\sqrt[3]{16x}\right-3\left\sqrt[3]{8x}\right](https://tex.z-dn.net/?f=%3D7%5Cleft%5Csqrt%5B3%5D%7B2x%7D%5Cright-3%5Cleft%5Csqrt%5B3%5D%7B16x%7D%5Cright-3%5Cleft%5Csqrt%5B3%5D%7B8x%7D%5Cright)
Now, We will find factors of the terms inside the square root
factors of 2: 2
factors of 16 : 2x2x2x2
factors of 8: 2x2x2
Putting these values in our equation:![=7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{2X2X2X2 x}\right)-3\left(\sqrt[3]{2X2X2 x}\right)\\=7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{2X2X2} \sqrt[3] {2 x}\right)-3\left(\sqrt[3]{2X2X2} \sqrt[3]{x}\right)\\=7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{2^3} \sqrt[3] {2 x}\right)-3\left(\sqrt[3]{2^3} \sqrt[3]{x}\right)\\=7\left(\sqrt[3]{2x}\right)-3*2\left(\sqrt[3] {2 x}\right)-3*2\left(\sqrt[3]{x}\right)\\=7\left(\sqrt[3]{2}\sqrt[3]{x}\right)-6\left(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right)](https://tex.z-dn.net/?f=%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2X2X2X2%20x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2X2X2%20x%7D%5Cright%29%5C%5C%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2X2X2%7D%20%5Csqrt%5B3%5D%20%7B2%20x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2X2X2%7D%20%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5C%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2%5E3%7D%20%5Csqrt%5B3%5D%20%7B2%20x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2%5E3%7D%20%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5C%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%2A2%5Cleft%28%5Csqrt%5B3%5D%20%7B2%20x%7D%5Cright%29-3%2A2%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5C%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%5Cright%29-6%5Cleft%28%5Csqrt%5B3%5D%20%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29)
Adding like terms we get:
![=7\left(\sqrt[3]{2}\sqrt[3]{x}\right)-6\left(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right\\=(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right)\\](https://tex.z-dn.net/?f=%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%5Cright%29-6%5Cleft%28%5Csqrt%5B3%5D%20%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%5C%5C%3D%28%5Csqrt%5B3%5D%20%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5C)
![(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right)\\can\,\,be \,\, written\,\, as\,\,\\(\sqrt[3] {2x})-6\left(\sqrt[3]{x}\right)](https://tex.z-dn.net/?f=%28%5Csqrt%5B3%5D%20%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5Ccan%5C%2C%5C%2Cbe%20%5C%2C%5C%2C%20written%5C%2C%5C%2C%20as%5C%2C%5C%2C%5C%5C%28%5Csqrt%5B3%5D%20%7B2x%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29)
So, option c is correct
Answer:
23
Step-by-step explanation:
3.47 = 3 sig. figs.
6.7 = 2 sig. figs.
Since these two numbers are being multiplied, you would round to the smallest number of sig. figs. of the two. In this case, it would be 2 significant figures.
3.47 * 6.7 = 23.249 (dont forget to round to 2 sig. figs. ) --> 23