Resposta:
Primer rectangle:
Amplada = 11
Longitud = 14
Segon rectangle:
Amplada = 12
Longitud = 15
Tercer rectangle:
Amplada = 13
Longitud = 16
Explicació pas a pas:
Donat que:
Primer rectangle:
Amplada = x
Longitud = x + 3
2n rectangle:
Augment de la dimensió d'1 cm respecte al primer rectangle;
Amplada = x + 1
Longitud = x + 4
3r rectangle:
Augment de la dimensió de 2 cm respecte al primer rectangle;
Amplada = x + 2
Longitud = x + 5
Suma dels tres perímetres del rectangle:
Perímetre d'un rectangle: 2 (l + O)
Primer rectangle:
2 (x + x + 3) = 2 (2x + 3) = 4x + 6
2n:
2 (x + 1 + x + 4) = 2 (2x + 5) = 4x + 10
3r:
2 (x + 2 + x + 5) = 2 (2x + 7) = 4x + 14
Suma de perímetres = 162
(4x + 6 + 4x + 10 + 4x + 14) = 162
12x + 30 = 162
12x = 162 - 30
12x = 130
x = 11
Per tant,
Primer rectangle:
Amplada = 11
Longitud = 11 + 3 = 14
2n rectangle:
Amplada = 11 + 1 = 12
Longitud = 11 + 4 = 15
3r rectangle:
Amplada = 11 + 2 = 13
Longitud = 11 + 5 = 16
Peaches to plums. 15 divided by 3 is 5, 12 divided by 3 is 4.
3 is the least common multiple
Answer:
3a -2
Step-by-step explanation:
2-(-3a+4)
Distribute the minus sign to each term inside the parentheses
2 - -3a -4
2 + 3a -4
Combine like terms
2-4 +3a
-2 +3a
We usually put the variables first
3a -2
Answer:
The revenue depends on the number of people n that purchases tickets, knowing that each ticket costs $30.00, the total revenue will be:
f(n) = $30.00*n
Now, we also know that the stadium is capable of seating a maximum of m fans, so the maximum possible value for n is m.
Now, for the function f(n), we have that:
The domain is the set of the possible values of n
The range is the set of the possible values of f(n).
We want to find the domain.
First, the minimum possible value of n is 0, the case where nobody purchases a ticket.
The maximum possible value of n is m, this is the case where the stadium is full.
Then the domain will be:
D= {n,m ∈ Z, 0 ≤ n ≤ m}
Where we imposed that n must be an integer number because n represents a whole quantity.