The geometrical relationships between the straight lines AB and CD is that they are parallel to each other
<h3>How to determine the relationship</h3>
It is important to note the following;
- A drawn from the origin and passes through point A (a , b), then the equation of OA = ax + by
- If a line is drawn from the origin and passes through point B (c , d), then the equation of OB = cx + dy
We find the equation of AB by subtracting OB from OA, thus AB = (c - a)x + (d - b)y
The slope of line AB =
⇒ OA= 2 x + 9 y
⇒ OA = 4 x + 8 y
⇒AB = OB - OA
⇒AB = (4 x + 8 y) - (2 x + 9 y)
⇒ AB = 4 x + 8 y - 2 x - 9 y
Collect like terms
⇒ AB = (4 x - 2 x) + (8 y - 9 y)
⇒AB = 2 x + -y
⇒ AB = 2 x - y
⇒ Coefficient of x = 2
⇒ Coefficient of y = -1
⇒ The slope of ab =
= 2
For CD
⇒ CD = 4 x - 2 y
⇒Coefficient of x = -4
⇒ Coefficient of y = -2
⇒The slope of cd =
= 2
Note that Parallel lines have same slopes
And Slope of ab = slope of cd
AB // CD
Therefore, the geometrical relationships between the straight lines AB and CD is that they are parallel to each other
Learn more about parallel lines here:
brainly.com/question/24607467
#SPJ1
You define a function f(x) which gives the cost of buying x packages of cookies. You are asked for the domain of the function. That is, what values can x take on? x is the number of packages bought.
It makes no sense to buy a negative number of packages. It also makes no sense to buy 1/2 a package or 3/4 of a package as the store won’t sell you a fraction of a package. Try going to the store and buying half a package of oreo cookies. I doubt you’ll get very far :)
So it makes sense to buy 0, 1, 2, 3, 4, ... boxes of cookies. These are whole numbers. So the domain is the set of whole numbers. You could also write the domain like this {0, 1, 2, 3, ...} making sure to use the curly brackets as those denote a set.
Take away 1 from either side so the equation becomes 63=3x then divide both sides by 3 so it becomes 21=x which is your answer (option A)
The answers to the questions
Answer:
A systematic sample
Step-by-step explanation:
since there is an increasing trend in the unpaid balances because of the rising cost of housing the best approach is A systematic sample.
A systematic sample is preferred because it will capture the individual debts over the period of 20 years (i.e. the whole 20 years of mortgages ) while a simple random sample will just capture a certain period and its result will not represent the true nature of indebtedness .