Ask me your other questions.i hope it was helpful
Answer:
k=8
Step-by-step explanation:
yes
Answer:
The answer is below
Step-by-step explanation:
Let a complex z = r(cos θ + isinθ), the nth root of the complex number is given as:

Given the complex number z = 81(cos(3π/8)+isin(3π/8)), the fourth root (i.e n = 4) is given as follows:
![z_{k=0}=81^{\frac{1}{4} }(cos(\frac{\frac{3\pi}{8} +2(0)\pi}{4} )+isin(\frac{\frac{3\pi}{8} +2(0)\pi}{4} ))=3[cos(\frac{3\pi}{32} )+isin(\frac{3\pi}{32})] \\z_{k=0}=3[cos(\frac{3\pi}{32} )+isin(\frac{3\pi}{32})]\\\\z_{k=1}=81^{\frac{1}{4} }(cos(\frac{\frac{3\pi}{8} +2(1)\pi}{4} )+isin(\frac{\frac{3\pi}{8} +2(1)\pi}{4} ))=3[cos(\frac{19\pi}{32} )+isin(\frac{19\pi}{32})] \\z_{k=1}=3[cos(\frac{19\pi}{32} )+isin(\frac{19\pi}{32})]\\\\](https://tex.z-dn.net/?f=z_%7Bk%3D0%7D%3D81%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%28cos%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%280%29%5Cpi%7D%7B4%7D%20%29%2Bisin%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%280%29%5Cpi%7D%7B4%7D%20%29%29%3D3%5Bcos%28%5Cfrac%7B3%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B3%5Cpi%7D%7B32%7D%29%5D%20%5C%5Cz_%7Bk%3D0%7D%3D3%5Bcos%28%5Cfrac%7B3%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B3%5Cpi%7D%7B32%7D%29%5D%5C%5C%5C%5Cz_%7Bk%3D1%7D%3D81%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%28cos%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%281%29%5Cpi%7D%7B4%7D%20%29%2Bisin%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%281%29%5Cpi%7D%7B4%7D%20%29%29%3D3%5Bcos%28%5Cfrac%7B19%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B19%5Cpi%7D%7B32%7D%29%5D%20%5C%5Cz_%7Bk%3D1%7D%3D3%5Bcos%28%5Cfrac%7B19%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B19%5Cpi%7D%7B32%7D%29%5D%5C%5C%5C%5C)
![z_{k=2}=81^{\frac{1}{4} }(cos(\frac{\frac{3\pi}{8} +2(2)\pi}{4} )+isin(\frac{\frac{3\pi}{8} +2(2)\pi}{4} ))=3[cos(\frac{35\pi}{32} )+isin(\frac{35\pi}{32})] \\z_{k=2}=3[cos(\frac{35\pi}{32} )+isin(\frac{35\pi}{32})]\\\\z_{k=3}=81^{\frac{1}{4} }(cos(\frac{\frac{3\pi}{8} +2(3)\pi}{4} )+isin(\frac{\frac{3\pi}{8} +2(3)\pi}{4} ))=3[cos(\frac{51\pi}{32} )+isin(\frac{51\pi}{32})] \\z_{k=3}=3[cos(\frac{51\pi}{32} )+isin(\frac{51\pi}{32})]](https://tex.z-dn.net/?f=z_%7Bk%3D2%7D%3D81%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%28cos%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%282%29%5Cpi%7D%7B4%7D%20%29%2Bisin%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%282%29%5Cpi%7D%7B4%7D%20%29%29%3D3%5Bcos%28%5Cfrac%7B35%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B35%5Cpi%7D%7B32%7D%29%5D%20%5C%5Cz_%7Bk%3D2%7D%3D3%5Bcos%28%5Cfrac%7B35%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B35%5Cpi%7D%7B32%7D%29%5D%5C%5C%5C%5Cz_%7Bk%3D3%7D%3D81%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%28cos%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%283%29%5Cpi%7D%7B4%7D%20%29%2Bisin%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B2%283%29%5Cpi%7D%7B4%7D%20%29%29%3D3%5Bcos%28%5Cfrac%7B51%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B51%5Cpi%7D%7B32%7D%29%5D%20%5C%5Cz_%7Bk%3D3%7D%3D3%5Bcos%28%5Cfrac%7B51%5Cpi%7D%7B32%7D%20%29%2Bisin%28%5Cfrac%7B51%5Cpi%7D%7B32%7D%29%5D)
Answer:
Adult: 50 tickets
Child: 34 tickets
Step-by-step explanation:
Let a be the amount of adult tickets
Let c be the amount of child tickets
Equation:
a + c = 84
14a + 9c = 1,006
Step 1: Multiply a + c = 84 with -9, to canceled c.
-9 (a + c = 84) → -9a - 9c = -756
14a + 9c = 1006 → 14a + 9c = 1006
Step 2: Combined the 2 equation together, and solved it.
-9a - 9c = -756
<u>14a + 9c = 1006</u>
<u> 5a</u> = <u>250</u>
5 5
a = 50
Step 3: Plug 50 into the one of the equation, and solved it.
a + c = 84 → 50 + c = 84
<u>-50 -50</u>
c = 34
Answer: Adult tickets (a) = 50 and Child tickets (c) = 34
To check the answer plug the two number into the equation ( Make sure to add 50 for a and 34 for c).
Answer:
4
Step-by-step explanation:
all you have to do is divide 12 by 3