Answer:
the correct answer is d) i.e the above statement has a solution which is neither positive nor negative
because X+10=10
or,X=10-10
X=0
and 0 is neither positive nor negative
Answer: P=8
Step-by-step explanation:
3p-5=19
U turn -5 to +5
Then u add 5 to both sides, -5 and 19
3p-5=19
+5=+5
-5 and +5 cancel each other out so know it’s
3p=24
Because 19 plus 5 is 24
Now u have to get the variable by itself by dividing 3 on both sides of the equal sign 3p and 24
3 and 3 cancel each other out so now you only have p=24 but then 24 divided 3 is 8
First solve for the slope, m using the two points given. It doesn't matter which point you choose as point 1 or 2 as long as you're consistent.
m = (y2 - y1)/(x2 - x1)
point 1: (–6.4, –2.6)
point 2: (5.2, 9)
m = (9 - -2.6)/(5.2 - -6.4)
m = (9 + 2.6)/(5.2 + 6.4)
m = 11.6/11.6
m = 1
put the newly found slope into the linear equation for m
y = (1)x + b
y = x + b
Now solve for the y-intercept, b
by putting one of the given points
9 = 5.2 + b
b = 9 - 5.2
b = 3.8
final equation:
y = x + 3.8
Answer:
<u>a) x = 3</u>
<u>b) z = 10</u>
<u>c) p = 2</u>
<u>d) x = 7</u>
<u>e) u = 1</u>
Step-by-step explanation:
a) 2x = 6
Despejamos x dividiendo por 2 a amabos lados de la eacuacion.
(2/2)x = 6/2
<u>x = 3</u>
Si remplazamos x en la ecuación original:
2(3)=6
6 = 6
Queda demostrado.
b) 10 + z = 20
Despejamos z restando 10 en amabos lados de la eacuacion.
10-10+z = 20-10
<u>z = 10</u>
Si remplazamos z en la ecuación original:
10 + 10=20
20 = 20
Queda demostrado.
c) p + 9 = 11
Despejamos p restando 9 en amabos lados de la eacuacion.
p + 9 - 9 = 11-9
<u>p = 2</u>
Si remplazamos p en la ecuación original:
2 + 9 = 11
11 = 11
Queda demostrado.
d) 3x + 8 = 29
Despejamos x restando 8 en amabos lados de la eacuacion y luego divideindo por 3 en ambos lados de la ecuación.
3x+8-8 = 29-8
3x = 21
(3/3)x = 21/3
<u>x = 7</u>
Si remplazamos x en la ecuación original:
3(7) + 8 = 29
21 + 8 = 29
29 = 29
Queda demostrado
e) 2u + 8 = 10
Despejamos u restando 8 en amabos lados de la eacuacion y luego divideindo por 2 en ambos lados de la ecuación.
2u+8-8 = 10-8
2x = 2
(2/2)x = 2/2
<u>x = 1</u>
Si remplazamos x en la ecuación original:
2(1) + 8 = 10
2 + 8 = 10
10 = 10
Queda demostrado
Espero te haya sido de ayuda!
See Quadratic Formula and Determinant's/Delta's formula