1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex787 [66]
3 years ago
15

Look at the graph:

Mathematics
1 answer:
balu736 [363]3 years ago
7 0

Answer:

we can't answer this

Step-by-step explanation:

you did not put eney pictures

You might be interested in
Which of the following is the independent variable of G(F(y)) ?
alisha [4.7K]

Given:

The composition of functions is G(F(y)).

To find:

The independent variable of G(F(y)).

Solution:

Independent variable is the variable whose value independent from other variable. It means the value of independent variables is not depend on the other variable.

We know that G(F(y)) can be written as

G(F(y))=(G\circ F)(y)

Here, the value of function G depends on F(y) and the value of F(y) depend on variable y. But value of y does not depend on any variable. So, y is the  independent variable of G(F(y)).

Therefore, the correct option is C.

5 0
3 years ago
PLEASE HELP ASAP, LOOK IN PICS TO SEE OPTIONS
Monica [59]
The third picture3rd graph
8 0
3 years ago
Read 2 more answers
If the integral of the product of x squared and e raised to the negative 4 times x power, dx equals the product of negative 1 ov
Nataly_w [17]

Answer:

A + B + E = 32

Step-by-step explanation:

Given

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{1}{64}e^{-4x}[Ax^2 + Bx + E]C

Required

Find A +B + E

We have:

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{1}{64}e^{-4x}[Ax^2 + Bx + E]C

Using integration by parts

\int {u} \, dv = uv - \int vdu

Where

u = x^2 and dv = e^{-4x}dx

Solve for du (differentiate u)

du = 2x\ dx

Solve for v (integrate dv)

v = -\frac{1}{4}e^{-4x}

So, we have:

\int {u} \, dv = uv - \int vdu

\int\limits {x^2\cdot e^{-4x}} \, dx  = x^2 *-\frac{1}{4}e^{-4x} - \int -\frac{1}{4}e^{-4x} 2xdx

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} - \int -\frac{1}{2}e^{-4x} xdx

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} +\frac{1}{2} \int xe^{-4x} dx

-----------------------------------------------------------------------

Solving

\int xe^{-4x} dx

Integration by parts

u = x ---- du = dx

dv = e^{-4x}dx ---------- v = -\frac{1}{4}e^{-4x}

So:

\int xe^{-4x} dx = -\frac{x}{4}e^{-4x} - \int -\frac{1}{4}e^{-4x}\ dx

\int xe^{-4x} dx = -\frac{x}{4}e^{-4x} + \int e^{-4x}\ dx

\int xe^{-4x} dx = -\frac{x}{4}e^{-4x}  -\frac{1}{4}e^{-4x}

So, we have:

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} +\frac{1}{2} \int xe^{-4x} dx

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} +\frac{1}{2} [ -\frac{x}{4}e^{-4x}  -\frac{1}{4}e^{-4x}]

Open bracket

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} -\frac{x}{8}e^{-4x}  -\frac{1}{8}e^{-4x}

Factor out e^{-4x}

\int\limits {x^2\cdot e^{-4x}} \, dx  = [-\frac{x^2}{4} -\frac{x}{8} -\frac{1}{8}]e^{-4x}

Rewrite as:

\int\limits {x^2\cdot e^{-4x}} \, dx  = [-\frac{1}{4}x^2 -\frac{1}{8}x -\frac{1}{8}]e^{-4x}

Recall that:

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{1}{64}e^{-4x}[Ax^2 + Bx + E]C

\int\limits {x^2\cdot e^{-4x}} \, dx  = [-\frac{1}{64}Ax^2 -\frac{1}{64} Bx -\frac{1}{64} E]Ce^{-4x}

By comparison:

-\frac{1}{4}x^2 = -\frac{1}{64}Ax^2

-\frac{1}{8}x = -\frac{1}{64}Bx

-\frac{1}{8} = -\frac{1}{64}E

Solve A, B and C

-\frac{1}{4}x^2 = -\frac{1}{64}Ax^2

Divide by -x^2

\frac{1}{4} = \frac{1}{64}A

Multiply by 64

64 * \frac{1}{4} = A

A =16

-\frac{1}{8}x = -\frac{1}{64}Bx

Divide by -x

\frac{1}{8} = \frac{1}{64}B

Multiply by 64

64 * \frac{1}{8} = \frac{1}{64}B*64

B = 8

-\frac{1}{8} = -\frac{1}{64}E

Multiply by -64

-64 * -\frac{1}{8} = -\frac{1}{64}E * -64

E = 8

So:

A + B + E = 16 +8+8

A + B + E = 32

4 0
3 years ago
Solve 5x4/9. help pleeeeaaassee
Rus_ich [418]

Answer:

\sf \: 2 \frac{2}{9}

Step-by-step explanation:

Q) 5 × (4/9) = ?

→ (5 × 4)/9

→ 20/9

\rightarrow\sf \: 2 \frac{2}{9}

8 0
3 years ago
Read 2 more answers
Please help me asap!!!
ololo11 [35]

G should be the correct answer

Hope this helps!

4 0
3 years ago
Read 2 more answers
Other questions:
  • PLEASE ANSWER PROPERLY The law of cosines is used to find the measure of Z.
    11·1 answer
  • How to write a decimal number in two hundred ten thousand, fifty and nineteen hundredth
    13·2 answers
  • Please help!!!
    5·1 answer
  • What is 16x4 – 100y4 factored completely
    5·2 answers
  • I need help with this ​
    8·1 answer
  • What is m<1 answer ​
    12·1 answer
  • (d) State any two(2) properties of a semiconductor material.​
    5·1 answer
  • The ages of cars in the staff parking lot of a suburban college are uniformly distributed from 0 to 8 years. a) What is the mean
    10·1 answer
  • Brainlist asap, please help i need to boost my grade in math ♡´・ᴗ・`♡
    14·2 answers
  • A(n) = 15 + 3 (n-1) Find the 9th term
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!