The midpoint for any segment/line when you're given the start and end point of the line as A=(x1,y1) and B=(x2,y2) is
( ((x1 + x2) /2), ((y1 + y2)/2) )
So here the point is
( (-2+6)/2), (-6+12)/2) )
= (2, 3)
So it's the second option
Answer:
It looks like he is looking at a 30 or 45 degree angle, but I am 99.99% sure that it is 30 percent.
Step-by-step explanation:
n < 0, is another way to say "n is negative", so let's check
![\bf ~~~~~~~~~~~~\textit{negative exponents} \\\\ a^{-n} \implies \cfrac{1}{a^n} \qquad \qquad \cfrac{1}{a^n}\implies a^{-n} \qquad \qquad a^n\implies \cfrac{1}{a^{-n}} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ a^n~\hspace{10.5em}\stackrel{n = -n}{a^{-n}}\implies \cfrac{1}{a^n} \\\\\\ a^{-n}~\hspace{10em}\stackrel{n=-n}{a^{-(-n)}}\implies a^{+n}\implies a^n](https://tex.z-dn.net/?f=%20%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bnegative%20exponents%7D%0A%5C%5C%5C%5C%0Aa%5E%7B-n%7D%20%5Cimplies%20%5Ccfrac%7B1%7D%7Ba%5En%7D%0A%5Cqquad%20%5Cqquad%0A%5Ccfrac%7B1%7D%7Ba%5En%7D%5Cimplies%20a%5E%7B-n%7D%0A%5Cqquad%20%5Cqquad%0Aa%5En%5Cimplies%20%5Ccfrac%7B1%7D%7Ba%5E%7B-n%7D%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0Aa%5En~%5Chspace%7B10.5em%7D%5Cstackrel%7Bn%20%3D%20-n%7D%7Ba%5E%7B-n%7D%7D%5Cimplies%20%5Ccfrac%7B1%7D%7Ba%5En%7D%0A%5C%5C%5C%5C%5C%5C%0Aa%5E%7B-n%7D~%5Chspace%7B10em%7D%5Cstackrel%7Bn%3D-n%7D%7Ba%5E%7B-%28-n%29%7D%7D%5Cimplies%20a%5E%7B%2Bn%7D%5Cimplies%20a%5En%20)
3:12 or 1:4 write both and ask which one is better to use