Answer:
0.153
Explanation:
We know the up-thrust on the fish, U = weight of water displaced = weight of fish + weight of air in air sacs.
So ρVg = ρ'V'g + ρ'V"g where ρ = density of water = 1 g/cm³, V = volume of water displaced, g = acceleration due to gravity, ρ'= density of fish = 1.18 g/cm³, V' = initial volume of fish, ρ"= density of air = 0.0012 g/cm³ and V" = volume of expanded air sac.
ρVg = ρ'V'g + ρ"V"g
ρV = ρ'V'g + ρ"V"
Its new body volume = volume of water displaced, V = V' + V"
ρ(V' + V") = ρ'V' + ρ"V"
ρV' + ρV" = ρ'V' + ρ"V"
ρV' - ρ"V' = ρ'V" - ρV"
(ρ - ρ")V' = (ρ' - ρ)V"
V'/V" = (ρ - ρ")/(ρ' - ρ)
= (1 g/cm³ - 0.0012 g/cm³)/(1.18 g/cm³ - 1 g/cm³)
= (0.9988 g/cm³ ÷ 0.18 g/cm³)
V'/V" = 5.55
Since V = V' + V"
V' = V - V"
(V - V")/V" = 5.55
V/V" - V"/V" = 5.55
V/V" - 1 = 5.55
V/V" = 5.55 + 1
V/V" = 6.55
V"/V = 1/6.55
V"/V = 0.153
So, the fish must inflate its air sacs to 0.153 of its expanded body volume
First we can look at the taxonomic order:
Domain
Kingdom
Phylum
Class
Order
Family
Genus
Species
The largest level would be the one closest to the top of the list because it is the least specific and therefore the most inclusive. Out of the choices given, phylum is closest to the top, so that is the answer.
The polarity of the water molecule helps it to cohere to nearby water molecules, forming a skin over it.