The answer is b the second one
The cosine of an angle is the x-coordinate of the point where its terminal ray intersects the unit circle. So, we can draw a line at x=-1/2 and see where it intersects the unit circle. That will tell us possible values of θ/2.
We find that vertical line intersects the unit circle at points where the rays make an angle of ±120° with the positive x-axis. If you consider only positive angles, these angles are 120° = 2π/3 radians, or 240° = 4π/3 radians. Since these are values of θ/2, the corresponding values of θ are double these values.
a) The cosine values repeat every 2π, so the general form of the smallest angle will be
... θ = 2(2π/3 + 2kπ) = 4π/3 + 4kπ
b) Similarly, the values repeat for the larger angle every 2π, so the general form of that is
... θ = 2(4π/3 + 2kπ) = 8π/3 + 4kπ
c) Using these expressions with k=0, 1, 2, we get
... θ = {4π/3, 8π/3, 16π/3, 20π/3, 28π/3, 32π/3}
Answer: The correct answer is option C: Both events are equally likely to occur
Step-by-step explanation: For the first experiment, Corrine has a six-sided die, which means there is a total of six possible outcomes altogether. In her experiment, Corrine rolls a number greater than three. The number of events that satisfies this condition in her experiment are the numbers four, five and six (that is, 3 events). Hence the probability can be calculated as follows;
P(>3) = Number of required outcomes/Number of possible outcomes
P(>3) = 3/6
P(>3) = 1/2 or 0.5
Therefore the probability of rolling a number greater than three is 0.5 or 50%.
For the second experiment, Pablo notes heads on the first flip of a coin and then tails on the second flip. for a coin there are two outcomes in total, so the probability of the coin landing on a head is equal to the probability of the coin landing on a tail. Hence the probability can be calculated as follows;
P(Head) = Number of required outcomes/Number of all possible outcomes
P(Head) = 1/2
P(Head) = 0.5
Therefore the probability of landing on a head is 0.5 or 50%. (Note that the probability of landing on a tail is equally 0.5 or 50%)
From these results we can conclude that in both experiments , both events are equally likely to occur.
Answer:
You should evaluate whatever is in the parenthesis first.
Answer:
111 & 82
Step-by-step explanation:
888/8=111
574/7=82