Answer:

STEP BY STEP EXPLANATION

To make
a perfect square we should add 
Answer:
The sum of the internal ángles = 360°
(3y+40)° and (3x-70°) are suplementary angles = 180°
then:
(3x-70) + (3y+40) + 120 + x = 360 ⇒ first eq.
(3y+40) + (3x-70) = 180 ⇒ second eq
development:
from the first eq.
3x + x + 3y = 360 + 70 - 40 - 120
4x + 3y = 430 - 160
4x + 3y = 270 ⇒ third eq.
3y = 270 - 4x
y = (270 - 4x) / 3 ⇒ fourth eq.
from the secon eq.:
3y + 3x = 180 + 70 - 40
3y + 3x = 250 - 40
3y + 3x = 210 ⇒ fifth eq.
multiply by -1 the fifth eq and sum with the third eq.
-3y - 3x = -210 ⇒ (fifth eq. *-1)
3y + 4x = 270
⇒ 0 + x = 60
x = 60°
from the fourth eq.
y = (270-4x)/3
y = (270-(4*60)) / 3
y = (270 - 240) / 3
y = 30/3
y = 10°
Probe:
from the first eq.
(3x-70) + (3y+40) + 120 + x = 360
3*60 - 70 + 3*10 + 40 + 120 + 60 = 360
180 - 70 + 30 + 40 + 120 + 60 = 360
180 + 30 + 40 + 120 + 60 - 70 = 360
430 - 70 = 360
Answer:
y = 10
Step-by-step explanation:
this is you answer solved.
Step-by-step explanation:
A kite is a special case of quadrilateral. In which larger diagonal bisects the smaller diagonal at right angle.
A kite is a quadrilateral whose four sides can be grouped into two pairs of equal-length sides that are adjacent to each other. In contrast, a parallelogram also has two pairs of equal-length sides, but they are opposite to each other rather than adjacent.
9514 1404 393
Answer:
A. 3×3
B. [0, 1, 5]
C. (rows, columns) = (# equations, # variables) for matrix A; vector x remains unchanged; vector b has a row for each equation.
Step-by-step explanation:
A. The matrix A has a row for each equation and a column for each variable. The entries in each column of a given row are the coefficients of the corresponding variable in the equation the row represents. If the variable is missing, its coefficient is zero.
This system of equations has 3 equations in 3 variables, so matrix A has dimensions ...
A dimensions = (rows, columns) = (# equations, # variables) = (3, 3)
Matrix A is 3×3.
__
B. The second row of A represents the second equation:

The coefficients of the variables are 0, 1, 5. These are the entries in row 2 of matrix A.
__
C. As stated in part A, the size of matrix A will match the number of equations and variables in the system. If the number of variables remains the same, the number of rows of A (and b) will reflect the number of equations. (The number of columns of A (and rows of x) will reflect the number of variables.)