Answer:
x = 28 cm
Step-by-step explanation:
Given:
Area of link shaded regions = 84 cm²
Required:
The value of x (diameter of the semicircle/length of the rectangle)
Solution:
Diameter of the semicircle = 2r = x
Length of rectangle (L) = 2r = x
Radius of semicircle (r) = ½x
Width of rectangle (W) = radius of semicircle = ½x
Use 3.14 as π
Area of the link shaded regions = area of rectangle - area of semicircle
Thus:
Area of the link shaded regions = (L*W) - (½*πr²)
Plug in the values
84 = (x*½x) - (½*3.14*(½x)²)
84 = x²/2 - (1.57*x²/4)
84 = x²(½ - 1.57/4)
84 = x²(0.5 - 0.3925)
84 = x²(0.1075)
Divide both sides by 0.1075
84/0.1075 = x²
781.4 = x²
√781.4 = x
27.9535329 = x
x = 28 cm
The candle would burn for 18 hours.
45 / 15 = 3
If the candle is three times longer than normal, it will burn three times longer than normal.
3 x 6 = 18
Answer:
4c + 15
Step-by-step explanation:
THIS IS THE COMPLETE QUESTION BELOW;
A department store's customer parking lot has 4 rows with an equal number of parking spots in each row. The lot also has 15 parking spots for store employees. If c cars can be parked in each of the 4 main rows of the parking lot, what is the expression for the maximum number of cars that can be parked in the parking lot?
15c − 4
c(15 − 4)
4c + 15
4(c + 15)
✓We were told that the customer stores parking has Total number of 4 rows,
✓ for " c" cars to be parked in the 4 main rows i.e in each of them, we can calculate the overall numbers of car parked in the rolls as ( 4 × c)= 4c
✓ we were told that there are 15 parking spots available to employees in the store
✓ maximum number of cars that can fit into the parking lot will be ( 15 + 4c)
= 4c + 15
You can take out 2x^3 from both terms making it
2x^3 (15+8x^2)
Answer is B