Answer:
A triangle with angles:
"45°, 45°, 90°"
Is a triangle rectangle, with two catheti of equal length.
Now, there is a lot of problems that you can solve with this:
"Suppose that you want to find the height at which you need to attach a wire in a tree, such that the distance between the tree and the ground is 18ft, and the distance between the base of the tree and the two points where the wire is fixed is exactly the same"
Well, here we have a triangle rectangle with a hypotenuse of 18 ft, with cathetus of equal length (the catheti are the tree and the distance between the base of the tree and the point where the wire is attached at the ground)
And because the catheti are equal, then the angles are 45°, 45° and 90°.
Answer:
37.68 Inches cubed (A)
Step-by-step explanation:
The formula for a cylinder is:
πr^2(h)
First, let's find the radius, which is:
4/2 = 2
Now, we can plug in the values:
3.14(2)^2(3)
Do exponents first:
3.14(4)(3)
Multiply left to right:
12.56(3)
Again:
37.68 Inches
So, the answer is:
37.68 Inches cubed (Or A)
Hope this helps!
Step-by-step explanation:
(23)2-5=6
23 3 =6
so it goanna be 2raise to power 3x equal6
Apply the rule: 
![3[2 ln(x-1) - lnx] + ln(x+1)=3[ln(x-1)^{2} - lnx ] + ln(x+1)](https://tex.z-dn.net/?f=3%5B2%20ln%28x-1%29%20-%20lnx%5D%20%2B%20ln%28x%2B1%29%3D3%5Bln%28x-1%29%5E%7B2%7D%20-%20lnx%20%5D%20%2B%20ln%28x%2B1%29)
Apply the rule : 
![3[2 ln(x-1) - lnx] + ln(x+1)=3ln\frac{(x-1)^{2} }{x} + ln(x+1)](https://tex.z-dn.net/?f=3%5B2%20ln%28x-1%29%20-%20lnx%5D%20%2B%20ln%28x%2B1%29%3D3ln%5Cfrac%7B%28x-1%29%5E%7B2%7D%20%7D%7Bx%7D%20%2B%20ln%28x%2B1%29)
Apply the rule: 
![3[ln (x-1)^{2} -ln x]+ln (x+1)= ln \frac{(x-1)^{6} }{x^{3} } +log(x+1)](https://tex.z-dn.net/?f=3%5Bln%20%28x-1%29%5E%7B2%7D%20-ln%20x%5D%2Bln%20%28x%2B1%29%3D%20ln%20%5Cfrac%7B%28x-1%29%5E%7B6%7D%20%7D%7Bx%5E%7B3%7D%20%7D%20%2Blog%28x%2B1%29)
Finally, apply the rule: log a + log b = log ab
![3[ln(x-1)^{2} -ln x]+log(x+1)=ln\frac{(x-1)^{6}(x+1) }{x^{3} }](https://tex.z-dn.net/?f=3%5Bln%28x-1%29%5E%7B2%7D%20-ln%20x%5D%2Blog%28x%2B1%29%3Dln%5Cfrac%7B%28x-1%29%5E%7B6%7D%28x%2B1%29%20%7D%7Bx%5E%7B3%7D%20%7D)
Step-by-step explanation:
(a) If his second pass is the first that he completes, that means he doesn't complete his first pass.
P = P(not first) × P(second)
P = (1 − 0.694) (0.694)
P ≈ 0.212
(b) This time we're looking for the probability that he doesn't complete the first but does complete the second, or completes the first and not the second.
P = P(not first) × P(second) + P(first) × P(not second)
P = (1 − 0.694) (0.694) + (0.694) (1 − 0.694)
P ≈ 0.425
(c) Finally, we want the probability he doesn't complete either pass.
P = P(not first) × P(not second)
P = (1 − 0.694) (1 − 0.694)
P ≈ 0.094